
A Multi-Tiered Distributed
I/O Buffering System

Anthony Kougkas
akougkas@iit.edu

CS492, Sept 26th, 2022

mailto:akougkas@iit.edu

Hermes Project
The team

Collaborative project
funded by NSF

3

Anthony Kougkas
akougkas@iit.edu

● A new, multi-tiered, distributed buffering
system that:

○ Enables, manages, and supervises I/O
operations in the Deep Memory & Storage
Hierarchy (DMSH).

○ Offers selective and dynamic layered data
placement.

○ Is modular, extensible, and
performance-oriented.

○ Supports a wide variety of applications
(scientific, BigData, etc.,).

Hermes Overview

Memory
e.g., DRAM

Parallel File System (e.g., disks)

Burst Buffers (e.g., SSD)

Local Storage
(e.g., NVMe)

Far Memory
e.g.,3DXpointHe

rm
es

mailto:akougkas@iit.edu

4

Anthony Kougkas
akougkas@iit.edu

● HDF5 is a self-describing hierarchical
data format which makes it ideal for
Hermes

○ Utilize the rich metadata offered by HDF5 to
efficiently place data in the hierarchy.

○ Leverage HDF5 characteristics
■ files,
■ groups,
■ datasets,
■ chunked I/O

Hermes + HDF5

map

mailto:akougkas@iit.edu

5

Anthony Kougkas
akougkas@iit.edu

● Hermes strives for:
○ being application- and system-aware,

○ maximizing productivity and path-to-science,

○ increasing resource utilization,

○ abstracting data movement,

○ maximizing performance, and

○ supporting a wide range of applications

Objectives

mailto:akougkas@iit.edu

Design and Architecture

7

Anthony Kougkas
akougkas@iit.edu

1. Hermes core library
a. Manages tiers transparently
b. Facilitates data movement in the hierarchy
c. Provides native buffering API

2. Hermes Adapters
a. POSIX, MPI-IO, Pub-Sub, etc

i. Intercept I/O calls to Hermes
ii. Boosts legacy app support

3. Hermes VFD
a. Directs HDF5 I/O to Hermes native API

4. Hermes VOL
a. Captures application’s behavior and provides hints to

Hermes core lib
5. Hermes Toolkit

Hermes Ecosystem

mailto:akougkas@iit.edu

8

Anthony Kougkas
akougkas@iit.edu

● Hermes machine model:
○ Large amount of RAM
○ Local NVMe and/or SSD device
○ Shared Burst Buffers
○ Remote disk-based PFS

● Hierarchy based on:
○ Access Latency
○ Data Throughput
○ Capacity

● Two data paths:
○ Vertical (within node)
○ Horizontal (across nodes)

Hermes Architecture

mailto:akougkas@iit.edu

9

Anthony Kougkas
akougkas@iit.edu

● Blobs
○ Unit of data as key-value pairs
○ Value as uninterpreted byte arrays
○ Stored internally as a collection of

buffers across multiple tiers

● Bucket
○ Collection of blobs
○ Flat blob organization

● Virtual Bucket
○ Linked blobs across buckets
○ Attached capabilities

● Traits
○ Ordering, grouping, filtering
○ Compression, deduplication, etc

Hermes Data Model

mailto:akougkas@iit.edu

10

Anthony Kougkas
akougkas@iit.edu

Hermes Lib Design
● API
● Metadata Manager
● Prefetcher
● Buffer Pool Manager
● Data Placement Engine
● Buffer Organizer
● I/O Clients

mailto:akougkas@iit.edu

11

Anthony Kougkas
akougkas@iit.edu

Hermes Buffering Modes

Persistent
• Synchronous

• write-through cache,
• stage-in

• Asynchronous
• write-back cache,
• stage-out

1
Non-Persistent

• Temporary scratch
space

• Intermediate results
• In-situ analysis and

visualization

2
Bypass

• Write-around cache

3

mailto:akougkas@iit.edu

12

Anthony Kougkas
akougkas@iit.edu

Hermes Data Placement Policies

Maximum Application
Bandwidth (MaxBW):
this policy aims to
maximize the
bandwidth applications
experience when
accessing Hermes.

1
Maximum Data Locality:
this policy aims to
maximize buffer
utilization by
simultaneously
directing I/O to the
entire DMSH.

2
Hot-data:
this policy aims to offer
applications a fast
cache for frequently
accessed data (i.e.,
hot-data).

3
User-defined:
this policy aims to
support user-defined
buffering schemas.
Users are expected to
submit an XML file with
their preferred buffering
requirements.

4

mailto:akougkas@iit.edu

Maximum
Bandwidth

Start from the top layer
If free space > request size
place data here
If not, choose the best between

1. Place as much data as possible here and the rest to the next layer
OR

2. Skip this layer and place data to the next one OR
3. First flush top layer and then place data

Recursive process

RAM

NVMe

Burst buffers

File.dat1

Xian-He Sun, Professor
sun@iit.edu

• Data dispersion unit:
• POSIX files
• HDF5 datasets
• Etc.

• Place data based on:
• Location of previously

buffered data
• Ratio between layers

Data
Locality

1

2

3

A

Procs Files

B

C

B C

A

C

A

B
Burst buffers

RAM

NVMe

DMSH2

Xian-He Sun, Professor
sun@iit.edu

• Place data based on:
• Spectrum of hot – cold data

• Higher layers hold hotter data

Hot
data

RAM

NVMe

Burst buffers

File.dat3

Xian-He Sun, Professor
sun@iit.edu

Deployment

17

Anthony Kougkas
akougkas@iit.edu

● Dedicated core for Hermes
● Node Manager

○ Dedicated multithreaded core per node
○ MDM
○ Buffer Organizer
○ Messaging Service
○ Memory management
○ Prefetcher
○ Cache manager

● RDMA-capable communication
● Can also be deployed in I/O

Forwarding Layer (I/O FL)

Hermes Node Design

mailto:akougkas@iit.edu

18

Anthony Kougkas
akougkas@iit.edu

Hermes Adapter Layer

Applications can natively interact with Hermes
using existing I/O Interfaces

● Standard Interceptors
○ STDIO
○ POSIX
○ MPI-IO

● HDF5 Level
○ Hermes VFD
○ Hermes VOL

Hermes Core Library

Hierarchical Storage Hardware

Node-local RAM

Node-local NVMe SSD

Shared Burst Buffer

Parallel File System

HDF5

STDIO MPI-IO

HermesVFD

HermesVOL

Native

mailto:akougkas@iit.edu

19

Anthony Kougkas
akougkas@iit.edu

Deployment Models

Collocated
● Hermes Core is part of the application.
● Synchronization is managed internally by

hermes lib.
● Isolates buffering data across applications.

Decoupled
● Hermes Core is separate from the application.
● The Hermes core needs to be running before

the application.
○ Manually, or
○ as a service

● Can share buffering data across applications.

mpirun -n 1280 -f app_hf ./application

mpirun -n 32 -f hermes_core_hf ./hermes_core
mpirun -n 1248 -f app_hf ./application

mailto:akougkas@iit.edu

Initial Results

Scientific Applications

• Strong scaled up to 1024
ranks

• 16-time steps

• Metric:
• Total I/O time

(write + read + flush)

• Vector Particle-In-Cell (VPIC):
• Uses HDF5 files

• Hardware Accelerated
Cosmology Code (HACC):

• MPI - I/O Independent

Hermes offers 5x and 2x
higher write performance

on average when
compared to

No Buffering and
state-of-the-art buffering

platforms

Hermes offers 7.5x and
2x higher read

performance for repetitive
patterns when compared

to
No Buffering and

state-of-the-art buffering
platforms

VPIC

HACC

• Hermes hides data movement between tiers behind compute
• Hermes leverages the extra layers of the DMSH to offer higher BW
• Hermes utilizes a concurrent flushing overlapped with compute

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. Hermes: A Heterogeneous-Aware
Multi-Tiered Distributed I/O Buffering System, In Proceedings of the 27th International Symposium
on High-Performance Parallel and Distributed Computing, pp. 219-230. ACM, 2018.

22

Anthony Kougkas
akougkas@iit.edu

Hermes Acceleration for VPIC-style Workload

VPIC-IO
● HDF5 files
● Checkpointing
● File-per-process
● Buffer the intermediate

checkpoints and flush at
finalize

● Remote global PFS
suffers from high latency
and low throughput

● Contention across
processes

mailto:akougkas@iit.edu

Tools and Services

24

Anthony Kougkas
akougkas@iit.edu

● Deep Storage Hierarchy
○ Spans multiple tiers within a node...
○ ...but also multiple nodes in the cluster

● Applications need to distribute data structures
across multiple nodes.

○ Hermes Container Library (HCL)
■ H. Devarajan, A. Kougkas, K. Bateman, and X-H

Sun. "HCL: Distributing parallel data structures in
extreme scales." In 2020 IEEE International
Conference on Cluster Computing (CLUSTER).

■ https://github.com/HDFGroup/hcl
○ We invite the community to try it out

■ And please give us feedback.

Hermes Container Library (HCL)

mailto:akougkas@iit.edu
https://github.com/HDFGroup/hcl

25

Anthony Kougkas
akougkas@iit.edu

● Application Orchestrator
○ offers support in a multiple-application environment
○ manages access to the shared layers of the hierarchy
○ minimizes interference between different applications sharing a layer
○ coordinates the flushing of the buffers to achieve maximum I/O performance

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun, and Jay Lofstead.
"Harmonia: An Interference-Aware Dynamic I/O Scheduler ",
In Proceedings of the IEEE International Conference on Cluster Computing 2018 (Cluster'18)

Hermes External Services

mailto:akougkas@iit.edu
http://www.cs.iit.edu/~scs/assets/files/Harmonia_slides.pdf

26

Anthony Kougkas
akougkas@iit.edu

● System Profiler
○ runs once during the initialization
○ performs a profiling of the underlying system in terms of hardware resources
○ detects the availability of DMSH and measures each layer's respective performance
○ profiles the applications and identifies incoming I/O phases
○ works together with the application coordinator (Harmonia) to detect access conflicts

Hermes External Services

Hariharan Devarajan, Anthony Kougkas, P. Challa, Xian-He Sun
“Vidya: Performing Code-Block I/O Characterization for Data
Access Optimization”
In Proceedings of the IEEE International Conference on High
Performance Computing, Data, and Analytics 2018 (HiPC'18),
Bengaluru, India

mailto:akougkas@iit.edu
https://drive.google.com/open?id=1XjFlI9-kE_AeKdMVmAaS1WXWh8_ALxf7
https://drive.google.com/open?id=1XjFlI9-kE_AeKdMVmAaS1WXWh8_ALxf7

27

Anthony Kougkas
akougkas@iit.edu

Hermes VOL plugin for HDF5 coming…

mailto:akougkas@iit.edu

Q&A

29

Anthony Kougkas
akougkas@iit.edu

Q&A

Q: The Data Placement Engine (DPE) policies rely on the fact that users know the
behavior of their application in advance which can be a bold assumption.

A: Hermes uses profiling tools beforehand to learn about the application’s behavior
and thus, tune itself. Our work, Vidya, further solves this issue by automating the
whole process analyzing the source code.

Q: How does Hermes integrate to modern HPC environments?

A: As of now, applications link to Hermes (re-compile or dynamic linking). An HDF5
VOL plugin is underway. We also intend to incorporate Hermes to the system
scheduler and thus, include buffering resources into batch scheduling.

mailto:akougkas@iit.edu

30

Anthony Kougkas
akougkas@iit.edu

Q&A

Q: How are Hermes’ policies applied in multi-user environments?

A: Hermes’ Application Orchestrator is designed for multi-tenant
environments. Our work, Harmonia, has been tested and proven it can
mitigate the contention between competing applications.
Q: What is the impact of the asynchronous data reorganization?

A: In scenarios where there is some computation in between I/O (i.e., most
realistic application workloads), asynchronicity works great.

mailto:akougkas@iit.edu

31

Anthony Kougkas
akougkas@iit.edu

Q&A

Q: What is Hermes’ metadata size?

A: In our evaluation, for 1 million user files, the metadata created by Hermes
were 1.1GB.

Q: Is Hermes open source?

A: Yes! The 1st public beta release is scheduled for Nov 1st. We are currently
improving the quality of the code and writing documentation.

mailto:akougkas@iit.edu

32

Anthony Kougkas
akougkas@iit.edu

Q&A

Q: How to balance the data distribution across different compute nodes
especially when the I/O load is imbalanced across nodes?

A: Hermes’ System Profiler provides the current status of the system (i.e.,
remaining capacity, etc) and DPE is aware of this before it places data in the
DMSH. It is up to Hermes’ Engine to balance the load.
Q: How to minimize extra network traffic caused by horizontal data
movement?

A: Horizontal data movement can be in the way of the normal compute
traffic. RDMA capable machines can help. We also suggest using the
“service class” of the Infiniband network to apply priorities in the network.

mailto:akougkas@iit.edu

33

Anthony Kougkas
akougkas@iit.edu

Q&A

Q: How is the limited RAM space partitioned between applications and
Hermes?

A: Totally configurable by the user. Typical trade-off. More RAM to
Hermes can lead to higher performance. No RAM means skip the layer.

Q: What is Hermes’ DPE complexity?

A: In the order of number of tiers.

mailto:akougkas@iit.edu

34

Anthony Kougkas
akougkas@iit.edu

Q&A

Q: How difficult is to tune Hermes’ configuration parameters?

A: We expose a configuration_manager class which is used to pass several Hermes’
configuration parameters. ML-assisted tuner is planned to be added.

Q: What is Hermes API?

A: Hermes captures existing I/O calls. Our own API is really simple consisting of
hermes::get(…, flags) and hermes::put(…,flags). Flag system implements active
buffering semantics (currently only for the burst buffer nodes).

mailto:akougkas@iit.edu

35

Anthony Kougkas
akougkas@iit.edu

How Can I Get Involved?

● Github repo:
https://github.com/HDFGroup/hermes

● Create an issue to submit feedback, use
cases, or feature requests.

● Note: Hermes is still under active
development with target beta release this
November

mailto:akougkas@iit.edu
https://github.com/HDFGroup/hermes

Publications

37

Anthony Kougkas
akougkas@iit.edu

● Conferences:
○ Kougkas, A; Devarajan, H; and Sun X-H. "Hermes: a heterogeneous-aware multi-tiered

distributed I/O buffering system." In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing, pp. 219-230. 2018.

○ Devarajan, H; Kougkas, A; Bateman, K; Sun, X.-H. "HCL: Distributing Parallel Data Structures in
Extreme Scales," 2020 IEEE International Conference on Cluster Computing (CLUSTER),

○ Devarajan, H; Kougkas, A; Logan, L; and Sun, X.-H. "HCompress: Hierarchical Data
Compression for Multi-Tiered Storage Environments," 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 2020,

○ Devarajan, H; Kougkas, A; Sun, X.-H. "HFetch: Hierarchical Data Prefetching for Scientific
Workflows in Multi-Tiered Storage Environments," 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 2020,

○ Devarajan, H; Kougkas, A; Sun, X.-H. "HReplica: A Dynamic Data Replication Engine with
Adaptive Compression for Multi-Tiered Storage," 2020 IEEE International Conference on Big
Data (Big Data)

Publications

mailto:akougkas@iit.edu

38

Anthony Kougkas
akougkas@iit.edu

● Journals:
○ Kougkas, A; Devarajan, H; Sun, X.-H., “I/O Acceleration via Multi-Tiered Data Buffering and

Prefetching”, In Journal of Computer Science and Technology (JCST) 2020. vol 35. no 1. pp
92-120. 10.1007/s11390-020-9781-1

○ Kougkas, A; Devarajan, H; Sun, X.-H., “Bridging Storage Semantics using Data Labels and
Asynchronous I/O”, in Transactions on Storage (TOS), Vol 16, No 4, Article 22, 2020.
DOI:https://doi.org/10.1145/3415579

Publications

mailto:akougkas@iit.edu

Questions?
Anthony Kougkas
akougkas@iit.edu

Multi-Tiered
Distributed I/O

Buffering System

