
ChronoLog
A Distributed Tiered Shared Log Store

with Time-based Data Ordering 

Anthony Kougkas
akougkas@iit.edu 

CS492, Sept 26th, 2022

mailto:akougkas@iit.edu


Agenda

• Setting the context
• ChronoLog

• Design and architecture
• Implementation details

• Tail operations
• Recording and replaying log events

• Ramifications of physical time
• Experimental results
• Conclusions and future steps



akougkas@iit.edu

The rise of activity data

❑ Activity data describe things that happened rather than things that are.
❑ Log data generation:

❑ Human-generated: various types of sensors, IoT devices, web activity, mobile and edge 
computing, telescopes, enterprise digitization, etc.,

❑ Computer-generated: system synchronization, fault tolerance replication techniques, system 
utilization monitoring, service call stack, error debugging, etc.,

❑ Low TCO of data storage ($0.02 per GB) has created a “store-all” mindset
❑ Today, the volume, velocity, and variety of activity data has exploded

❑ e.g., SKA telescopes produce 7 TB/s

Slide 3



akougkas@iit.edu

Log workloads

❑ Internet companies and Hyperscalers
❑ Track user activity (e.g., logins, clicks, comments, search queries) for better recommendations, 

targeted advertisement, spam protection, and content relevance

❑ Financial applications (banking, high-frequency trading, etc.,)
❑ Monitor financial activity (e.g., transactions, trades, etc.,) to provide real-time fraud protection

❑ Internet-of-Things (IoT) and Edge computing
❑ Autonomous driving, smart devices, etc.,

❑ Scientific discovery
❑ instruments, telescopes, high-res sensors, etc.,

Connecting two or more stages of a data processing pipeline without explicit control of the data flow 
while maintaining data durability is a common characteristic across activity data workloads.

Slide 4



akougkas@iit.edu

Log basics

❑ Simple storage abstraction
❑ An append-only, totally-ordered sequence of immutable data entries (or events)

❑ The ordering of events defines a notion of "time“ (leftmost entries are older than rightmost)

❑ Content and format of data entries are often serialized in a binary representation

❑ Writes
❑ Data are appended at the end of the log

❑ Reads
❑ Proceed left-to-right in a linear scan fashion

❑ Not all that different from a file or a table. 
❑ A file is an array of bytes, a table is an array of records



akougkas@iit.edu

❑ A shared log can act as
❑ an authoritative source of strong 

consistency (global shared truth)

❑ a durable data store with fast appends 
and “commit” semantics

❑ an arbitrator offering transactional 
isolation, atomicity, and durability 

❑ a consensus engine for consistent 
replication and indexing services 

❑ an execution history for replica creation

❑ A shared log can enable
❑ fault-tolerant databases

❑ metadata and coordination services

❑ key-value and object stores

❑ filesystem namespaces

❑ failure atomicity

❑ consistent checkpoint snapshots

❑ geo-distribution

❑ data integration and warehousing

Shared Log abstraction

❑ A strong and versatile primitive
❑ at the core of many distributed data systems and real-time applications

Slide 6



akougkas@iit.edu

Log as the backend

❑ Data intensive computing requires a 
capable storage infrastructure

❑ A distributed shared log store can be in 
the center of scalable storage services

❑ Additional storage abstractions can be 
built on top of a distributed shared log

❑ Logs can support a wide variety of 
different application requirements

Slide 7



akougkas@iit.edu

State-of-the-art log stores

❑ Cloud community
❑ Bookkeeper, Kafka, DLog

❑ HPC community
❑ Corfu, SloG, Zlog

❑ Commonalities 
❑ The logical abstraction of 

a shared log

❑ APIs

Slide 8



Existing 
log store 

shortcomings

● Limited parallelism

○ Data distribution, Serving requests (SWMR model)

● Increased Tail Lookup Cost 

○ Mapping lookup cost (MDM OR Sequencing)

● Expensive Synchronization

○ Epochs and commits

● Partial Ordering

○ Segment/partition and NOT in the entire log

● Lack of support for hierarchical storage

○ A log resides in only a single tier of storage

Main Challenge
How to balance log ordering, write-availability,

log capacity scaling, parallelism, log entry 
discoverability, and performance?

9



akougkas@iit.edu

❑ A combination of the append-only 
nature of a log abstraction and the 
natural strict order of a global truth, 
such as physical time, can be 
combined to build a distributed shared 
log store that avoids the need for 
expensive synchronizations.

❑ An efficient mapping of the log entries 
to the tiers of a storage hierarchy can 
help scale the capacity of the log and 
offers two important I/O 
characteristics: tunable access 
parallelism and I/O isolation between 
tail and historical log operations.

Two key insights - Motivation

Slide 10



akougkas@iit.edu

Ramifications of physical time

❑ Using physical time to distribute and order data is beneficial[1]
❑ Avoids expensive locking and synchronization mechanisms

❑ However, maintaining the same time across multiple machines is a challenge

❑ Our thesis:
❑ Physical time only makes sense in a log context since it is an immutable append-only structure 

that only moves forward, like a physical clock does! 

❑ Three major challenges:
❑ Taming the Clock Uncertainty

❑ Handling Backdated Events

❑ Handling Event Collision

[1] Corbett, James C., Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, et al. "Spanner: Google’s Globally-Distributed 
Database." In 10th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 12), pp. 261-264. 2012.

ChronoLog provides solutions to these challenges

Slide 11



A Distributed 
Tiered 
Shared 
Log Store



akougkas@iit.edu

In a glance

❑ ChronoLog is a new distributed shared and tiered log store responsible for the 
organization, storage, and retrieval of activity data

❑ Main objective
❑ support a wide variety of applications with conflicting log requirements under a single platform

❑ Major contributions

SYNCHRONIZATION-FREE 
LOG ORDERING USING 

PHYSICAL TIME

LOG SCALING VIA 
AUTO-TIERING IN 

MULTIPLE STORAGE 
TIERS

HIGHLY CONCURRENT 
LOG ACCESS MODEL 

(MWMR)

RANGE RETRIEVAL 
MECHANISMS 

(PARTIAL GET)

Slide 13



akougkas@iit.edu

Design requirements

Log Distribution
Highly parallel data 

distribution in the event 
granularity

3D distribution forming 
a square pyramidal 
frustum (3-tuple of 

{log,node,tier})

Log Ordering
Sync-free tail finding

Total log ordering 
guarantee 

Log Access
Multiple-Writer-Multiple
-Reader (MWMR) access 

model

Log Scaling
Automatically expand 
the log footprint via 
auto-tiering across 
hierarchical storage 

environments

Log Storage
Tunable parallel I/O 

model
Elastic storage 

capabilities

Slide 14



akougkas@iit.edu

Data model and terminology

❑ Chronicle
❑ a named data structure that consists of a collection of data elements (events) 

ordered by physical time (i.e., topic, log, stream, ledger)

❑ Event
❑ a single data unit (i.e., message, record, entry) as a key-value pair

❑ the key is a ChronoTick (time slot) and the value is an uninterpreted byte array

❑ ChronoTick: a monotonically increasing positive integer
❑ represents the time distance from the chronicle’s base value

(i.e., offset from chronicle creation timestamp)

❑ Story
❑ a story is a division of a chronicle (i.e., partition, segment, fragment)

❑ a sorted immutable collection of events great for sequential access on top of HDDs

Slide 15



akougkas@iit.edu

Chronicle acquisition

❑ Clients acquire/release a chronicle (e.g., open/close a file) 
❑ before any data operation can occur

❑ Acquisitions (projections):
❑ Fully

❑ Partially (forming a projection of a chronicle)
❑ From chronicle-start till a given eventID

❑ From a given eventID till the chronicle-end

❑ Between two eventIDs

❑ Time-based
❑ Timer expiration (e.g., acquire for 5 mins)

❑ Handles orphaned handles of acquired chronicles

❑ Chronicle projections increase resource utilization and performance



akougkas@iit.edu

Basic Operations

❑ Supports typical log operations
❑ ChronoLog allows replay operations to accept a range (start-end events) for 

partial access

RECORD 
AN EVENT (APPEND)

PLAYBACK 
A CHRONICLE 
(TAIL-READ)

REPLAY 
A CHRONICLE 

(HISTORICAL READ)

Slide 17



akougkas@iit.edu

System overview

❑ Client API
❑ ChronoVisor

❑ Client connections

❑ Chronicle metadata

❑ Global clock

❑ ChronoKeeper
❑ All tail operations

❑ ChronoStore
❑ ChronoGrapher

❑ ChronoPlayer

Slide 18



akougkas@iit.edu

ChronoLog API

Slide 19



akougkas@iit.edu

ChronoKeeper

❑ Runs on highest tier of 
hierarchy (e.g., DRAM, NVMe)

❑ Distributed journal
❑ Fast indexing
❑ Lock-free locating the log tail
❑ Event backlog for caching effect

Slide 20



akougkas@iit.edu

ChronoKeeper – Record()

❑ Client lib 
❑ attaches ChronoTick and uniformly 

hashes eventID to a server

❑ no need for a sequencer

❑ Server 
❑ pushes data to a data hashmap and 

❑ at the same time updates the index 
and tail hashmap atomically 
(overlapped)

Slide 21



akougkas@iit.edu

ChronoKeeper – Playback()

❑ Client lib 
❑ invokes get_tail() on the server

❑ gets a vector of latest eventIDs per 
server

❑ calculate the max ChronoTick 

❑ invoke play() on the server

❑ Server 
❑ fetches data from hashmap

❑ Delivery Guarantee: 
❑ no later event from timestamp of 

playback() call + network latency

Slide 22



akougkas@iit.edu

ChronoGrapher
❑ Absorbs data from ChronoKeeper in 

a continuous streaming fashion
❑ Runs a distributed key-value store 

service on top of flash storage
❑ Utilize SSDs capability for random 

access but create sequential access 
for HDD

❑ Implements a server-pull model for 
data eviction from the upper tiers

❑ Elastic resource management 
matching incoming data rates

Slide 23



akougkas@iit.edu

ChronoGrapher
Recording data
❑ Event collector: pulls events from ChronoKeeper
❑ Story builder: groups and sorts eventIDs per chronicle
❑ Story writer: persists stories to the bottom tier using parallel I/O

Slide 24



akougkas@iit.edu

ChronoPlayer
❑ Executes historical reads
❑ Deployed on all storage nodes in a 

ChronoStore cluster
❑ Locate and fetch events in the entire 

hierarchy by accessing:
❑ PFS on HDDs

❑ KVS on SSDs

❑ Journal on NVMe using ChronoKeeper’s 
indexing 

❑ Implements a decoupled, elastic, and 
streaming architecture

Slide 25



akougkas@iit.edu

ChronoGrapher
Replaying data
❑ Replay handler: listens for requests and queues them
❑ Range resolver: processes requests and produces a vector of eventID ranges
❑ Request executor: deduplicates ranges and executes the reading

Slide 26



Dealing with Physical Time



akougkas@iit.edu

Taming the clock uncertainty

❑ Issues
❑ Time distance between two clocks

❑ Different ticking rates 
(a.k.a drift rates)

❑ Solution
❑ Server nodes sync with ChronoVisor 

during init and periodically afterwards

❑ Clients use ChronoTicks as a relative 
distance from a base clock

Slide 28



akougkas@iit.edu

Backdated events

❑ Due to network non-determinism, events may arrive later violating the 
immutability and the ordering of a chronicle (backdating)

❑ ChronoLog defines an Acceptance Time Window (ATW)
❑ ATW is a moving time window imposed on each chronicle acquisition period

❑ ATW is equal to twice the network latency between the clients and ChronoLog
❑ Latency as measured during client connection or chronicle acquisition

Slide 29



akougkas@iit.edu

Event collisions

❑ Chronicle indexing granularity is 
based on physical time 
(ChronoTicks)

❑ For coarser granularities, events 
might collide
❑ How to detect a collision

❑ How to correct a collision

❑ Workload objectives
❑ SemanticA: Idempotent 

❑ SemanticB: Redudancy

❑ SemanticC: Ordering

❑ SemanticD: Sequentiality 

Slide 30



Experimental Results

All tests were conducted on the Ares cluster at Illinois 
Institute of Technology using:
▪ 24 client nodes
▪ 8 BB nodes
▪ 32 storage nodes

▪ various storage devices (NVMe, SSD, HDD) 
▪ 40GBit Ethernet network with RoCE enabled



A
pp

lic
at

io
n 

W
or

kl
oa

ds
● Stress-test:

○ All clients issue 32K 
record-playback requests

○ ChronoLog outperformed both 
by a significant margin due to 
its lack of synchronizations 

● KVS:
○ All clients issue 32K put-get 

requests

○ Corfu faster than Bookkeeper 
due to more parallelism

○ ChronoLog is 2-14x faster

● SMR:
○ All clients log instructions in a 

replica set

○ ChronoLog saturates at 1900 
replicas, making it 5x faster 

● Timeseries:
○ The tiered approach and the 

time-based indexing provides a 
25% improvement

Stress Test Key-Value Store

State Machine Replica Time Series



akougkas@iit.edu

Conclusions
❑ ChronoLog uses 

❑ A truly hierarchical design and a 
decoupled and elastic architecture to 
match the I/O production and 
consumption rates from clients

❑ Physical time to distribute and order data 
to boost performance by eliminating a 
centralized synchronization point

❑ Future work: extend the ecosystem

The rise of log data in 
modern applications 
expects a distributed 
shared log store with 
total ordering that is 
capable to scale well

Modern storage stacks 
need to be elevated to 
take advantage of the 
new types of storage 
devices and offer 
superior performance

Slide 33



Thank you
Anthony Kougkas
akougkas@iit.edu 

Special thanks to our sponsor
National Science Foundation

mailto:akougkas@iit.edu

