
DYNAMIC LINKING
CONSIDERED HARMFUL

1

¡ Want to access code/data defined somewhere else (another
file in our project, a library, etc)

¡ In compiler-speak, “we want symbols with external linkage”
§ I only really care about functions here

¡ Need a mechanism by which we can reference symbols whose
location we don’t know

¡ A linker solves this problem. Takes symbols annotated by the
compiler (unresolved symbols) and patches them

WHY WE NEED LINKING

2

¡ We want to:

¡ use code defined somewhere else, but we don’t want to have
to recompile/link when it’s updated

¡ be able to link only those symbols used as runtime
(deferred/lazy linking)

¡ be more efficient with resources (may get to this later)

DYNAMIC LINKING

3

¡ Applies to UNIX, particularly Linux, x86 architecture, ELF

Relevant files:
-glibcX.X/elf/rtld.c
-linux-X.X.X/fs/exec.c, binfmt_elf.c
-/usr/include/linux/elf.h

¡ (I think) Windows linking operates similarly

CAVEATS

4

THE BIRTH OF A
PROCESS

5

¡ Compiles your code into a relocatable object file (in the ELF
format, which we’ll get to see more of later)

¡ One of the chunks in the .o is a symbol table

¡ This table contains the names of symbols referenced and
defined in the file

¡ Unresolved symbols will have relocation entries (in a
relocation table)

THE COMPILER

6

¡ Patches up the unresolved symbols it can. If we’re
linking statically, it has to fix all of them. Otherwise,
at runtime

¡ Relocation stage. Will not go into detail here.
§ Basically, prepares program segments and symbol references

for load time

THE LINKER

7

fork(), exec()

8

THE SHELL

¡ Loaders are typically kernel modules. Each module (loader)
registers a load_binary() callback, added to a global
linked list

¡ Kernel opens binary, passes it to each loader on list. If a
loader claims it, the kernel invokes that loader’s load_binary()
function

THE KERNEL (LOADER)

9

10

¡Find the program’s interpreter. For ELF, this is
ld.so! (the dynamic linker) How do we know
this? Next slide

¡Map the program’s binary image into its
address space

¡Launch the interpreter (not the program!)

THE PROCESS LAUNCH (STILL KERNEL)

11

12

¡ Receives control directly from kernel

¡ mmap() any shared libraries the process might need. (These
are encoded in the ELF by the linker, ldd can tell you)

¡ call program’s entry point (actually, the entry point to the C
runtime, _init())

¡ The linker could resolve all symbols at this point, but usually
doesn’t (see LD_BIND_NOW)

¡ So how do symbols get resolved at runtime???

THE DYNAMIC LINKER (RTLD)

13

¡There are four major components to the
Linux/ld/ELF runtime linking process

¡ELF .dynamic section
¡Procedure Linkage Table (PLT)
¡Global Offset Table (GOT)
¡The Link Map

THE GUTS

14

15

16

We’ll see this again

17

¡The Procedure Linkage Table contains entries
for just that—procedure linkage. i.e. where to
go when we want to invoke external functions

¡Linked closely with the GOT

¡Lets us do lazy linking

¡Too clever for its own good
18

THE PLT

19

What?? We jump to…0?

20

To GDB!

The GOT is filled in at runtime! (This is one of the
reasons why the kernel invokes ld.so)

This is a trampoline. Hold on to your boots

The $0x0 is actually an offset into a relocation table,
so this is the first

21

Remember seeing that
somewhere?

22

So we push the address of the second thing in the GOT onto the
stack, then jump to the THING at 600850, which is….

What the hell is that?

23

An address in the text segment of ld!

This is the runtime linker’s entry point. On startup, the
linker always installs it in the GOT

¡There are three special entries in the GOT that
are reserved

¡GOT[0] = the address of the .dynamic
section (the runtime linker uses this well-
defined section to navigate the ELF)

¡GOT[1] = the link map
¡GOT[2] = the address of the linker’s entry

point (its symbol resolution function)

24

THE GOT

25

THE .DYNAMIC SECTION

¡ Linked list that chains the ELF objects for the
program and all of the shared libraries it uses

¡ Also one reason that order matters when you link
with shared libraries (with -l flag)

26

THE LINK MAP

struct link_map
{
ElfW(Addr) l_addr; /* Base address shared object is loaded at. */
char *l_name; /* Absolute file name object was found in. */
ElfW(Dyn) *l_ld; /* Dynamic section of the shared object. */
struct link_map *l_next, *l_prev; /* Chain of loaded objects. */

};

27

WHAT’S REALLY HAPPENING

Our stack
when we
enter the
linker

$0x0

&GOT[1] = struct link_map *

¡ We jump to linker entry point (notice it’s not a
callq)

¡ The linker examines the stack, pulls out the link map
address

¡ It uses the offset ($0x0) to look in the relocation
table

¡ Finds ‘puts’
¡ Traverses the linked list (link map) extracting each

node’s symbol table, and searches for ‘puts’
¡ If it finds it, it patches up *(GOT+0x18) with the real

address of puts, and jumps to that address

28

WHAT’S REALLY HAPPENING (CONTD.)

¡ Now the next time we call puts , it will do the right thing

¡ We found the guy behind the curtains!

29

NOW WHAT?

30

TO CONVINCE YOU…

Instruction after call to puts

Address of GOT[puts]

31

Text segment of libc, that seems like a
reasonable place for puts to live…

or, How do we shoot the guy behind the
curtains?

PUT YOUR GR(A|E)Y HATS ON

32

¡ We want to run some code (e.g. a backdoor) within
another process on the system, establishing a
persistent threat

¡ Very hard to detect if done properly

¡ We will use two well-known techniques: code
injection and function hijacking

¡ We will poison the PLT

THE ATTACK

33

¡ Assumes we have a shell on a compromised system

¡ Use ptrace() system call. Allows you to attach to
processes, modify their registers, memory, etc.

¡ We’ll attach to our target, inject a piece of shellcode
at %rip, and execute it (not the real payload, just a
bootstrap)

¡ We will have loaded an evil library into the target.
We restore the code we overwrote when we attached

THE INJECT

34

35

THE SHELLCODE

int foo () {

int fd = open(“evil_library.so”, O_RDONLY);

addr = mmap(, 8K, READ|WRITE|EXEC, SHARED, fd, 0);

return addr;
}

¡ We overwrite one of the target program’s GOT entries
and re-direct it to a function in our evil library

¡ In the case I will show, this function will change a
printout

¡ We can do this an arbitrary number of times, for an
arbitrary number of functions.

¡ When the function is invoked the next time, it will go
to the evil function

THE HIJACK

36

¡Direct code injection (no suspicious libraries
sitting around on disk)

¡Restore target process memory maps (side-
effect of using mmap)

¡Target a useful process on the system
¡Cover tracks (bash history, login auditing,

restore logs etc. etc.)

WHAT A REAL ATTACKER WOULD DO

37

¡Link everything statically (HA!)

¡Use GRSEC patches for Linux (no more ptrace,
but actually there are workarounds) (seccomp
these days)

¡Don’t put crap software on your system that will
give someone a root shell

¡Periodic checksums on running process images?
Very high overhead

COUNTER-MEASURES

38

¡ Dynamic Linking:
http://www.symantec.com/connect/articles/dynamic-linking-
linux-and-windows-part-one

¡ ELF format:
http://www.skyfree.org/linux/references/ELF_Format.pdf

¡ Kernel/rtdl interaction: http://s.eresi-
project.org/inc/articles/elf-rtld.txt

¡ ELF subversion:
http://althing.cs.dartmouth.edu/local/subversiveld.pdf

¡ Ask me

REFERENCES

39

