
Format String Vulnerability

Outline
● Format String
● Access optional arguments
● How printf() works
● Format string attack
● How to exploit the vulnerability
● Countermeasures

Format String

printf() - To print out a string according to a format.

int printf(const char *format, …);

The argument list of printf() consists of :

● One concrete argument format
● Zero or more optional arguments

Hence, compilers don’t complain if less arguments are passed to printf()
during invocation.

Access Optional Arguments
● myprint() shows how printf()

actually works.
● Consider myprintf() is

invoked in line 7.
● va_list pointer (line 1)

accesses the optional
arguments.

● va_start() macro (line 2)
calculates the initial position
of va_list based on the
second argument Narg (last
argument before the
optional arguments begin)

Access Optional Arguments
● va_start() macro gets the start

address of Narg, finds the size
based on the data type and sets
the value for va_list pointer.

● va_list pointer advances using
va_arg() macro.

● va_arg(ap, int) : Moves the ap
pointer (va_list) up by 4 bytes.

● When all the optional arguments
are accessed, va_end() is called.

How printf() Access Optional Arguments

● Here, printf() has three optional arguments. Elements starting with “%”
are called format specifiers.

● printf() scans the format string and prints out each character until “%” is
encountered.

● printf() calls va_arg(), which returns the optional argument pointed by
va_list and advances it to the next argument.

How printf() Access Optional Arguments

● When printf() is invoked, the
arguments are pushed onto the
stack in reverse order.

● When it scans and prints the format
string, printf() replaces %d with the
value from the first optional
argument and prints out the value.

● va_list is then moved to the position
2.

Missing Optional Arguments

● va_arg() macro doesn’t understand
if it reached the end of the optional
argument list.

● It continues fetching data from the
stack and advancing va_list
pointer.

Format String Vulnerability

What will happen if user_input
contains format specifiers?

In these three examples, user’s
input (user_input) becomes part of a
format string.

Vulnerable Code

Vulnerable Program’s Stack
Inside printf(), the starting point
of the optional arguments (va_list
pointer) is the position right above
the format string argument.

What Can We Achieve?
Attack 1 : Crash program

Attack 2 : Print out data on the stack

Attack 3 : Change the program’s data in the memory

Attack 4 : Change the program’s data to specific value

Attack 5 : Inject Malicious Code

Attack 1 : Crash Program

● Use input: %s%s%s%s%s%s%s%s
● printf() parses the format string.
● For each %s, it fetches a value where va_list points to and advances va_list

to the next position.
● As we give %s, printf() treats the value as address and fetches data

from that address. If the value is not a valid address, the program crashes.

Attack 2 : Print Out Data on the Stack

● Suppose a variable on the stack contains a secret (constant) and we need to
print it out.

● Use user input: %x%x%x%x%x%x%x%x
● printf() prints out the integer value pointed by va_list pointer and

advances it by 4 bytes.
● Number of %x is decided by the distance between the starting point of the

va_list pointer and the variable. It can be achieved by trial and error.

Attack 3 : Change Program’s Data in the Memory
Goal: change the value of var variable from 0x11223344 to some other value.

● %n: Writes the number of characters printed out so far into memory.
● printf(“hello%n”,&i) ⇒ When printf() gets to %n, it has already printed

5 characters, so it stores 5 to the provided memory address.
● %n treats the value pointed by the va_list pointer as a memory address and

writes into that location.
● Hence, if we want to write a value to a memory location, we need to have it’s

address on the stack.

Attack 3 : Change Program’s Data in the Memory

● The address of var is given in the beginning of the input so that it is stored
on the stack.

● $(command): Command substitution. Allows the output of the command to
replace the command itself.

● “\x04” : Indicates that “04” is an actual number and not as two ascii
characters.

Assuming the address of var is 0xbffff304 (can be obtained using gdb)

Attack 3 : Change Program’s Data in the Memory
● var’s address (0xbffff304) is on

the stack.
● Goal : To move the va_list pointer

to this location and then use %n to
store some value.

● %x is used to advance the va_list
pointer.

● How many %x are required?

Attack 3 : Change Program’s Data in the Memory

● Using trial and error, we check how many %x are needed to print out
0xbffff304.

● Here we need 6 %x format specifiers, indicating 5 %x and 1 %n.
● After the attack, data in the target address is modified to 0x2c (44 in decimal).
● Because 44 characters have been printed out before %n.

Attack 4 : Change Program’s Data to a Specific Value

Goal: To change the value of var from 0x11223344 to 0x9896a9

printf() has already printed out 41 characters before %.10000000x, so,
10000000+41 = 10000041 (0x9896a9) will be stored in 0xbffff304.

Attack 4 : A Faster Approach

Attack 4 : A Faster Approach
Goal: change the value of var to 0x66887799

● Use %hn to modify the var variable two bytes at a time.

● Break the memory of var into two parts, each with two bytes.

● Most computers use the Little-Endian architecture
● The 2 least significant bytes (0x7799) are stored at address 0xbffff304
● The 2 significant bytes (0x6688) are stored at 0xbffff306

● If the first %hn gets value x, and before the next %hn, t more characters are
printed, the second %hn will get value x+t.

Attack 4 : A Faster Approach
● Overwrite the bytes at 0xbffff306 with 0x6688.
● Print some more characters so that when we reach 0xbffff304, the number

of characters will be increased to 0x7799.

Attack 4 : Faster Approach

● Address A : first part of address of var (4 chars)
● Address B : second part of address of var (4 chars)
● 4 %.8x : To move va_list to reach Address 1 (Trial and error, 4x8=32)
● @@@@ : 4 chars
● 5 _ : 5 chars
● Total : 12+5+32 = 49 chars

Attack 4 : Faster Approach
● To print 0x6688 (26248), we need 26248 - 49 = 26199 characters as

precision field of %x.
● If we use %hn after first address, va_list will point to the second address and

same value will be stored.
● Hence, we put @@@@ between two addresses so that we can insert one

more %x and increase the number of printed characters to 0x7799.
● After first %hn, va_list pointer points to @@@@, the pointer will advance to

the second address. Precision field is set to 4368 =30617 - 26248 -1 in order
to print 0x7799 (30617) when we reach second %hn.

Attack 5 : Inject Malicious Code
Goal : To modify the return address of the vulnerable code and let it point it to the
malicious code (e.g., shellcode to execute /bin/sh) .Get root access if vulnerable
code is a SET-UID program.

Challenges :

● Inject Malicious code in the stack
● Find starting address (A) of the injected code
● Find return address (B) of the vulnerable code
● Write value A to B

Attack 5 : Inject Malicious Code
● Using gdb to get the return address and start address of the malicious code.
● Assume that the return address is 0xbffff38c
● Assume that the start address of the malicious code is 0xbfff358

Goal : Write the value 0xbffff358 to address 0xbffff38c

Steps :

● Break 0xbffff38c into two contiguous 2-byte memory locations :
0xbffff38c and 0xbffff38e.

● Store 0xbfff into 0xbffff38e and 0xf358 into 0xbffff38c

Attack 5 : Inject Malicious Code

● Number of characters printed before first %hn =
12 + (4x8) + 5 + 49102 = 49151 (0xbfff).

● After first %hn, 13144 + 1 =13145 are printed

● 49151 + 13145 = 62296 (0xbffff358) is printed on
0xbffff38c

Countermeasures: Developer
● Avoid using untrusted user inputs for format strings in functions like printf,

sprintf, fprintf, vprintf, scanf, vfscanf.

Countermeasures: Compiler
Compilers can detect potential format string vulnerabilities

● Use two compilers to
compile the program:
gcc and clang.

● We can see that
there is a mismatch in
the format string.

Countermeasures: Compiler

● With default settings, both compilers gave warning for the first printf().

● No warning was given out for the second one.

Countermeasures: Compiler

● On giving an option -wformat=2, both compilers give warnings for both printf statements
stating that the format string is not a string literal.

● These warnings just act as reminders to the developers that there is a potential problem but
nevertheless compile the programs.

Countermeaseures
● Address randomization: Makes it difficult for the attackers to guess the

address of the address of the target memory (return address, address of
the malicious code)

● Non-executable Stack/Heap: This will not work. Attackers can use the
return-to-libc technique to defeat the countermeasure.

● StackGuard: This will not work. Unlike buffer overflow, using format string
vulnerabilities, we can ensure that only the target memory is modified; no
other memory is affected.

Summary

● How format string works

● Format string vulnerability

● Exploiting the vulnerability

● Injecting malicious code by exploiting the vulnerability

