
Lecture 3 - Addressing Modes,
Memory Mapped I/O, and DMA

Logistics: 

How do we solve the addressing issue?

Memory-Mapped I/O Review

DMA

Project 1 prelim should be close to done. Will post P1 in coming days

office hours for TA posted

Register based offsets + a load immediate (but how does this work??)

Relative-addressing

PC-relative (address computation is done relative to current PC (what does

this mean for addressability in the instruction?). What type of integer should

the relative address be?

Page-relative offsets (upper part of the address is fixed)

Segment-relative offsets (upper part of address lives in a register)

If we don’t have absolute addressing, isn’t that a pain for programming?

Translate abs addresses (given by programmer) into PC-relative addresses

(that the machine understands). This is the job of the assembler traditionally

How it works: memory controller sits between CPU and peripherals (DRAM,

Chipset, Disk, etc.) It translates addresses on the address bus into device

requests. 

A device thus “owns” a region of the physical address space. A corollary of this

is that not every physical address corresponds to RAM! If your’e an operating

system (or an embedded program) don’t just expect to be able to do loads and

stores to random addresses!

Why? Even with asynchronous interrupts (which notify us when a device

completes or generally does something), we (the OS) still have to copy data

from device buffers into RAM. 



Direct Memory Access (DMA) eliminates this step. Devices instead read/write

directly from/to RAM. The CPU is then not involved at all in data transfer. 

Devices must be designed to have support for this. Device standards (like PCIe)

will provide guidelines on just how the DMA is implemented, but the idea is that

DMA will work with the same interface, independent of device.  If you’re curious

to learn more, do a search for “PCIe bus mastering.” From the OS’s point of view,

if it finds a PCI device that supports bus mastering, it means the device is doing

DMA

Practically, this means that device read/write requests go to the memory

controller, which routes them directly to RAM, bypassing the CPU entirely

(although the CPU will be interrupted at the end when the DMA transaction

finishes)

Some devices will have something like “write coalescing,” where the OS isn’t

interrupted until a certain number of DMA transactions have completed. This

number is usually programmable, and this feature is important for high-

bandwidth devices, e.g. 10GbE NICs (Imagine a large (say 2MB) packet of data

being transferred, I could raise interrupts every 1K or just wait for the one

interrupt when the entire thing has been transferred.

DMA becomes more complicated when we consider systems with virtual

memory. If we give a physical address to a device, that physical address has to

be valid when the transaction is actually complete. However, with typical virtual

memory systems, the OS is free to remap pages at will (e.g. to swap them). The

OS must ensure that this does not happen for pages which it uses for DMA!

That doesn’t really matter though for chips like the 6502 which (1) don’t have

virtual memory support and (2) don’t necessarily need to run with an OS.


