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Compiled  programs tied to ISA

• …and also to an operating system
• to run on another ISA, we (at minimum) have to recompile
• If we also want to run on another OS, we have to port the program
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Why not just use a process VM? 

• We can, but we’d have to do it many times! one for each guest<-> 
host pair (NxM problem)
• ABI mismatch is hard to deal with (still have to consider different 

Oses, even if same ISA)
• Performance is elusive
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Design a portable ISA

• Goal: ISA should be easy to compile to other ISAs
• minimize amount of machine state
• instruction set should be simple

• Decouple the ISA from any real hardware (and associated quirks!)
• What about I/O? 
• Tame complexity of syscalls: these have quicks both in hardware and OS
• Instead: I/O is handled by system libraries
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Basic flow for HLL VMs (two steps)
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Basic flow for HLL VMs (two steps)
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Basic flow for HLL VMs (two steps)
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vISA is an intermediate representation (IR)

• The big difference from the typical compiler pipeline (front-
end/backend split): backend is a runtime component!
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Brief note on IR history

• First language to use an IR was basic compiled PL (BCPL) - ~1967
• The IR was called “object code” (or O-code)
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Algol 60 (~1960)

• First block-structured 
language
• First with nested 

function defs with 
lexical scope
• First language with a 

formal definition 
(led to BNF 
grammar)
• I/O not part of lang.
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BCPL (~1967)

• Originally developed for 
writing compilers
• inherited from CPL, but 

much simpler
• One data type! (bit pattern)
• Can use pointers
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B - ~1969 - Ken Thompson and Dennis 
Ritchie)
main( ) { 
 auto a, b, c, sum;
 a = 1; 
 b = 2; 
 c = 3; 
 sum = a+b+c; 
 putnumb(sum);
 }
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Our HLL VM assumptions for now 

• Run as process VM (user level)
• Instructions execute on a virtual processor (which implements a vISA)
• Protection ignored for now
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Example: Pascal’s P-Code VM 

• Pascal developed in late 60s
• VM implementation came in 1975, making Pascal more popular
• Pascal heavily influenced the design of Java 
• Unlike Java, no object-orientation, no networked applications, no garbage 

collection, etc. 
• similar portability goals though!
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Pascal P-Code VM has two major parts…

• Instruction emulator (interpreter)
• Standard library routines
• These implement I/O using host OS routines
• Implemented as native code!
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P-Code VM memory layout is
similar…but different
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stack grows down
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Mark Pointer is base of current frame
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Extreme Pointer is end of current frame
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Heap grows up
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New Pointer indicates next free heap mem.
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It’s up to programmers to free memory!
this will cause a runtime error…
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new function à new stack frame
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new function à new stack frame
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mark stack handles ret vals, links between 
frames
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mark stack handles ret vals, links between 
frames
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Example P-Code

lodi  0  3 // load local var. from cur. frame (nset 0 depth),

           // offset 3 from top of mark stack.

ldci  1    // push constant 1 onto op stack
addi       // add top two items on op stack (implicit pop), push result

stri  0  3 // put result back into local variable location
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Example P-Code
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Important parts of Pascal P-Code 

• Stack machine simplifies writing host VM
• also creates smaller binaries

• cells can be sized based on implementation
• good for ISAs with different word sizes

• no memory addresses! programs cannot use them
• Interface to OS is via stdlibs
• to be generic, I/O libs must be designed for “weakest” host OS interface à 

lowest common denominator problem
• Tradeoff: platform independence vs. power of I/O and system interface!
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Modern HLL VMs have to handle…

• Security and protection: run programs from network/internet 
(untrusted sources)
• Robustness: support for PL abstractions (e.g., objects), strong type 

checking, garbage collection (automatic mem. mgmt.)
• Networking: have to use network efficiently due to bandwidth 

constraints à on-demand loading and linking, denser instr. encodings
• Performance!
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