
High-level Language VMs
CS 562: Virtual Machines

Kyle Hale

Reading: S&N Ch. 5

1

Compiled programs tied to ISA

• …and also to an operating system
• to run on another ISA, we (at minimum) have to recompile
• If we also want to run on another OS, we have to port the program

2

Why not just use a process VM?

• We can, but we’d have to do it many times! one for each guest<->
host pair (NxM problem)
• ABI mismatch is hard to deal with (still have to consider different

Oses, even if same ISA)
• Performance is elusive

3

Design a portable ISA

• Goal: ISA should be easy to compile to other ISAs
• minimize amount of machine state
• instruction set should be simple

• Decouple the ISA from any real hardware (and associated quirks!)
• What about I/O?
• Tame complexity of syscalls: these have quicks both in hardware and OS
• Instead: I/O is handled by system libraries

4

Basic flow for HLL VMs (two steps)

5

HLL program
vISA
code
(IR)

native ISA
codecompile compile

Basic flow for HLL VMs (two steps)

6

HLL program
vISA
code
(IR)

native ISA
codecompile compile

source program and
native ISA are
DECOUPLED

Basic flow for HLL VMs (two steps)

7

HLL program
vISA
code
(IR)

native ISA
codecompile compile

done at compile time

Basic flow for HLL VMs (two steps)

8

HLL program
vISA
code
(IR)

native ISA
codecompile compile

done at runtime
- emulation
- binary translation

vISA is an intermediate representation (IR)

• The big difference from the typical compiler pipeline (front-
end/backend split): backend is a runtime component!

9

Brief note on IR history

• First language to use an IR was basic compiled PL (BCPL) - ~1967
• The IR was called “object code” (or O-code)

10

Algol 60 (~1960)

• First block-structured
language
• First with nested

function defs with
lexical scope
• First language with a

formal definition
(led to BNF
grammar)
• I/O not part of lang.

11

BCPL (~1967)

• Originally developed for
writing compilers
• inherited from CPL, but

much simpler
• One data type! (bit pattern)
• Can use pointers

12

B - ~1969 - Ken Thompson and Dennis
Ritchie)
main() {
 auto a, b, c, sum;
 a = 1;
 b = 2;
 c = 3;
 sum = a+b+c;
 putnumb(sum);
 }

13

no types!

Our HLL VM assumptions for now

• Run as process VM (user level)
• Instructions execute on a virtual processor (which implements a vISA)
• Protection ignored for now

14

Example: Pascal’s P-Code VM

• Pascal developed in late 60s
• VM implementation came in 1975, making Pascal more popular
• Pascal heavily influenced the design of Java
• Unlike Java, no object-orientation, no networked applications, no garbage

collection, etc.
• similar portability goals though!

15

16

Pascal program Pascal
P-Code program P-Code VM

Pascal
front-end
compiler

interp.

17

Pascal program Pascal
P-Code program P-Code VM

Pascal
front-end
compiler

interp. runtime

Pascal P-Code VM has two major parts…

• Instruction emulator (interpreter)
• Standard library routines
• These implement I/O using host OS routines
• Implemented as native code!

18

P-Code VM memory layout is
similar…but different

19

VM memory

stack frame

stack frame

heap

constant
area

stack grows down

20

VM memory

stack frame

stack frame

heap

constant
area

stack frame

Mark Pointer is base of current frame

21

VM memory

stack frame

stack frame

heap

constant
area

stack frame

MP

Extreme Pointer is end of current frame

22

VM memory

stack frame

stack frame

heap

constant
area

stack frame

EP

MP

Heap grows up

23

VM memory

stack frame

stack frame

heap

constant
area

stack frame

EP

MP

new cell

New Pointer indicates next free heap mem.

24

VM memory

stack frame

stack frame

heap

constant
area

stack frame

EP

MP

new cell

NP

It’s up to programmers to free memory!
this will cause a runtime error…

25

VM memory

stack frame

stack frame

heap

constant
area

stack frame

EP

MP

new cell

NP

new cell

new cell

new function à new stack frame

26

VM memory

stack frame

stack frame

heap

constant
area

stack frame

new function à new stack frame

27

VM memory

stack frame

stack frame

heap

constant
area

stack frame

function ret value

static link

dynamic link

previous EP

ret. addr.

function params

local variables

operand stack

mark stack handles ret vals, links between
frames

28

VM memory

stack frame

stack frame

heap

constant
area

stack frame

function ret value

static link

dynamic link

previous EP

ret. addr.

function params

local variables

operand stack

mark stack

mark stack handles ret vals, links between
frames

29

VM memory

stack frame

stack frame

heap

constant
area

stack frame

function ret value

static link

dynamic link

previous EP

ret. addr.

function params

local variables

operand stack
temporary storage

for instructions!

Example P-Code

lodi 0 3 // load local var. from cur. frame (nset 0 depth),

 // offset 3 from top of mark stack.

ldci 1 // push constant 1 onto op stack
addi // add top two items on op stack (implicit pop), push result

stri 0 3 // put result back into local variable location

30

Example P-Code

lodi 0 3

ldci 1

addi
stri 0 3

31

local variables

operand stack

6
5
-4
-2

Example P-Code

lodi 0 3

ldci 1

addi
stri 0 3

32

local variables

operand stack

6
5
-4
-2

-2

Example P-Code

lodi 0 3

ldci 1

addi
stri 0 3

33

local variables

operand stack

6
5
-4
-2

-2

1

Example P-Code

lodi 0 3

ldci 1

addi
stri 0 3

34

local variables

operand stack

6
5
-4
-2

-1

Example P-Code

lodi 0 3

ldci 1

addi
stri 0 3

35

local variables

operand stack

6
5
-4
-1

Important parts of Pascal P-Code

• Stack machine simplifies writing host VM
• also creates smaller binaries

• cells can be sized based on implementation
• good for ISAs with different word sizes

• no memory addresses! programs cannot use them
• Interface to OS is via stdlibs
• to be generic, I/O libs must be designed for “weakest” host OS interface à

lowest common denominator problem
• Tradeoff: platform independence vs. power of I/O and system interface!

36

Modern HLL VMs have to handle…

• Security and protection: run programs from network/internet
(untrusted sources)
• Robustness: support for PL abstractions (e.g., objects), strong type

checking, garbage collection (automatic mem. mgmt.)
• Networking: have to use network efficiently due to bandwidth

constraints à on-demand loading and linking, denser instr. encodings
• Performance!

37

