High-level Language VMs

CS 562: Virtual Machines
Kyle Hale

Reading: S&N Ch. 5

Compiled programs tied to ISA

e ...and also to an operating system
* to run on another ISA, we (at minimum) have to recompile
* If we also want to run on another OS, we have to port the program

Why not just use a process VM?

* We can, but we’d have to do it many times! one for each guest<->
host pair (NxM problem)

* ABI mismatch is hard to deal with (still have to consider different
Oses, even if same ISA)

* Performance is elusive

Design a portable ISA

e Goal: ISA should be easy to compile to other ISAs
* minimize amount of machine state
* instruction set should be simple

* Decouple the ISA from any real hardware (and associated quirks!)
 What about |/O?

* Tame complexity of syscalls: these have quicks both in hardware and OS
* Instead: /0 is handled by system libraries

Basic flow for HLL VMs (two steps)

VISA

HLL program > code <
compile (IR) compile

native ISA
code

Basic flow for HLL VMs (two steps)

VISA

HLL program > code <
compile (IR) compile

native ISA
code

source program and
native ISA are
DECOUPLED

Basic flow for HLL VMs (two steps)

VISA

done at compile time . | nativesa

(IR) compile code

Basic flow for HLL VMs (two steps)

HLL program

compile

>

rdone at runtime
= emulation
i- binary translation

VISA is an intermediate representation (IR)

* The big difference from the typical compiler pipeline (front-
end/backend split): backend is a runtime component!

Brief note on IR history

* First language to use an IR was basic compiled PL (BCPL) - ~1967
* The IR was called “object code” (or O-code)

Algol 60 (~1960)

BEGIN
COMMENT
LITTTELTTTTEIT T L7 r i ir i it riiirriririiiirirtieriy

Y 1 _ // Name: Peter M. Maurer
FIrSt blOCk StrUCturEd // Program: Sieve of Eratosthenes
|an ua e // Due: Never
// Language: Algol 60
g g L1111 rrrrirriiiiriiiiieiiiiiiiiiiiillry/

r

Y 1 1 h d COMMENT define the sieve data structure ;
FI rSt Wlt neSte INTEGER ARRAY candidates[0:1000];
o o INTEGER i,3.,k;
fu nctlon defs Wlth ggﬁm=lgogq';; ira;;;; ;gzgnls); strict evaluation of AND ;
. BEGIN
|eXICa| Scope COMMENT everything is potentially prime until proven otherwise ;
candidates[i] := 1;
[} [] END;
o Flrst |anguage Wlth a ggﬁgzt::zig?ef=lo?or 0 is prime, so flag them off ;
candidates[l] := 0;

formal definition COMMENT start the sieve with the integer 0 ;

Loz (05

(IEd to BNF gggI; := i WHILE i<1000 DO

COMMENT advance to the next un-crossed out number. ;
gra m ma r) COMMENT this number must be a prime ;
FOR i := i WHILE i<1000 AND candidates[i] = 0 DO
BEGIN

* |/O not part of lang. i

COMMENT insure against running off the end of the data structure ;
IF i<1000 THEN
BEGIN

COMMENT cross out all multiples of the prime, starting with 2*p.;
j o= 2;

1Y o -t .

GET "libhdr"

MANIFEST $(

modulus = #x10001 // 2**16 + 1

BCPL (~1967) R

MSB N>>1
LSB 1
$)

 Originally developed for STATIC $(v=es e 9)

writing compilers S it

w := getvec(upb)

* inherited from CPL, but 0% 5 - 0 70 upb D0 vii ie 4
. pr(v, 15)
mUCh Slmpler prints -- Original data
0 1 2 3 4
. 9 10 11 12
* One data type! (bit pattern)
w!e :=1
. FOR i = 1 TO upb DO w!i := mul(w!(i-1), omega) // roots of unity
¢ Can use pOInte rS FOR i = 1 TO upb IF w!i=1 DO writef("omega****%n = 1*n", i)
UNLESS mul(w!upb, omega)=1 DO writef("Bad omega*n")
fftn(v)
pr(v, 15)
prints -- Transformed data
65017 26645 38448 37467 30114 19936 15550 42679
39624 42461 43051 65322 18552 37123 60445 26804

wle :=1

FOR i = 1 TO upb DO w!i := ovr(w!(i-1), omega) // inverse roots of unity
FOR i = 1 TO upb IF w!i=1 DO writef("omega****-%n = 1*n", i)

UNLESS ovr(w!upb, omega)=1 DO writef("Bad omega*n")

fftn(v)

FOR i = © TO upb DO v!i := ovr(v!i, N)

B -~1969 - Ken Thompson and Dennis
Ritchie)

main() {

auto a, b, c, sum;

a =1;

b = 2; no types!
cC = 3;

sum = a+b+c;

putnumb(sum);

Our HLL VM assumptions for now

* Run as process VM (user level)
* Instructions execute on a virtual processor (which implements a viSA)

* Protection ignored for now

Example: Pascal’s P-Code VM

* Pascal developed in late 60s
* VM implementation came in 1975, making Pascal more popular

* Pascal heavily influenced the design of Java

* Unlike Java, no object-orientation, no networked applications, no garbage
collection, etc.

* similar portability goals though!

Pascal program

Pascal
front-end
compiler

Pascal
P-Code program

interp.

P-Code VM

Pascal program

Pascal
front-end
compiler

Pascal
P-Code progra

runtime

Pascal P-Code VM has two major parts...

* Instruction emulator (interpreter)

e Standard library routines
* These implement I/O using host OS routines
* Implemented as native code!

P-Code VM memory layout is
similar...but different

VM memory

stack frame

stack frame

heap

constant
area

19

stack grows down

VM memory

stack frame

stack frame

stack frame

|

heap

constant
area

20

Mark Pointer is base of current frame

VM memory

G stack frame
stack frame
stack frame

heap

constant
area

Extreme Pointer is end of current frame

VM memory

G stack frame
stack frame
stack frame

4' -

@ |

heap

constant
area

Heap grows up

VM memory

stack frame

stack frame

stack frame

|

new cell

heap

constant
area

23

New Pointer indicates next free heap mem.

VM memory
G stack frame
stack frame
stack frame
4' -
new cell

constant
area

't’s up to programmers to free memory!
this will cause a runtime error...

VM memory

G stack frame
stack frame
stack frame
—
@ ne*/ cell
ne\l/ cell

new cell

heap

constant
area

new function =2 new stack frame

VM memory

stack frame

stack frame

stack frame

|

heap

constant
area

26

new function =2 new stack frame

VM memory

stack frame

stack frame

stack frame

|

function ret value
static link
dynamic link
previous EP

ret. addr.

heap

function params

constant
area

local variables

operand stack

27

mark stack handles ret vals, links between
framesv

M memory

stack frame

stack frame

mark stack

stack frame

|

function params
heap
local variables
constant
area

operand stack

mark stack handles ret vals, links between
framesv

M memory

stack frame function ret value
stack frame static link
stack frame dynamic link
l previous EP
ret. addr.
function params
heap
local variables
constant i ——————————————— LR,
area tempora ry sto rage

for instructions!

Example P-Code

lodi © 3

ldci 1
addi
stri O 3

30

Example P-Code

1 lodi © 3 :
e 1T
addi
stri 0 3

local variables

operand stack

31

Example P-Code

lodi © 3
ildei 1 i
addi

stri © 3

local variables

operand stack

32

Example P-Code

lodi © 3

ldci

T Em Em . i
| addi !
(7
stri © 3

local variables

operand stack

33

Example P-Code g
-4
lodi © 3 -2
l1dci 1 local variables
Fgggj __________ |
istri 0 3 :
-1

operand stack

Example P-Code

lodi © 3
ldci
addi
stri @ 3

local variables

operand stack

35

Important parts of Pascal P-Code

e Stack machine simplifies writing host VM
* also creates smaller binaries

* cells can be sized based on implementation
* good for ISAs with different word sizes

* no memory addresses! programs cannot use them

* Interface to OS is via stdlibs

* to be generic, I/0 libs must be designed for “weakest” host OS interface =2
lowest common denominator problem

* Tradeoff: platform independence vs. power of |/O and system interface!

Modern HLL VMSs have to handle...

* Security and protection: run programs from network/internet
(untrusted sources)

* Robustness: support for PL abstractions (e.g., objects), strong type
checking, garbage collection (automatic mem. mgmt.)

* Networking: have to use network efficiently due to bandwidth
constraints = on-demand loading and linking, denser instr. encodings

 Performance!

