
HLL VM Implementation
(Java)

CS 562: Virtual Machines
Kyle Hale

Reading: S&N Ch.5 & 6

1

Object Oriented Languages: Java

• Introduce the concept of “object,” which captures both:
• state
• and methods (which manipulate the state)

• class defines object structure
• an object is an instance of a class
• fields can be shared among instances (static keyword)

2

OO languages allow inheritance

• enables polymorphism: binding of a function is based on object
instance
• we can have a make_sound method for objects that inherit from class Animal
• make_sound for class HouseCat might print “meow”
• make_sound for class Lion might print “roar”

3

Java allows us to define interfaces

• A list of methods that all classes that implement the interface must
implement
• Does not have any state itself (interfaces cannot be instantiated)

4

Java Virtual Machine Overview

• Data types
• Internal data representation
• ISA (bytecode)
• Exceptions
• Class Representation

5

Primitive Data Types

• Primitive types defined based on values they can take on, not the bits
• E.g., an int can range between -2^31 and +2^31-1
• Types
• int
• char
• byte
• short
• float
• double
• returnAddress

6

References

• Value that points to an object in memory (or null if the reference
hasn’t been assigned)
• Internal representation depends on implementation!
• (e.g., could be 32-bit pointer, 64-bit pointer, 256-bit pointer with a ton of

metadata…)

• Note: programs cannot inspect (or use) the internal representation!
(java does not have pointers/addresses!)

7

Objects

• constructed from primitive data types, and references which may
refer to other objects
• Arrays are treated as special objects (the ISA has explicit support for

them)

8

Internal JVM storage

• Global area: main memory, where globally declared variables live
• Local storage: local variables, this is attached to a method’s stack

frame
• Op storage: (operand stack)
• All storage areas store cells

9

Stack

• Each method gets its own stack frame
• Locals on the stack have a fixed size (this is known at compile time)
• Operand stack is used for arithmetic:
• ONLY primitive types and references (objects and arrays cannot be put on the

stack)

10

Global Memory

• Code (methods)
• Heap (holds objects and arrays)
• Size of global memory is unspecified (implementation dependent)
• When objects are created in heap, a reference is also created to point

to it
• Objects can only be accessed via references, which much match type

of object referred to

11

Constant Pool

• Constant values that are not encoded as instruction operands have to
go somewhere!
• But, they can have a range of lengths (e.g., strings)
• These constants are placed in a constant pool (just a bag of bytes)
• Instructions that use them use indexes into the const. pool

12

Memory Layout

13

heap

opcode operand operand operand
opcode operand operand
opcode
opcode operand operand

opcode operand

opcode operand operand operand

const pool

stack frame

Locals

Operands

instructions (bytecode)

Operands can
reference constants
using indexes

14

heap

opcode operand operand operand
opcode operand operand
opcode
opcode operand operand

opcode operand

opcode operand operand operand

const pool

stack frame

Locals

Operands

instructions (bytecode) index

index

Some instructions
have implied operands
(e.g., add)

15

heap

opcode operand operand operand
opcode operand operand
opcode
opcode operand operand

opcode operand

opcode operand operand operand

const pool

stack frame

Locals

Operands

instructions (bytecode)

Some instructions
have implied operands
(or iload)

16

heap

opcode operand operand operand
opcode operand operand
opcode
opcode operand operand

opcode operand

opcode operand operand operand

const pool

stack frame

Locals

Operands

instructions (bytecode)

Constants and
operands point to
the heap with references

17

heap

opcode operand operand operand
opcode operand operand
opcode
opcode operand operand

opcode operand

opcode operand operand operand

const pool

stack frame

Locals

Operands

instructions (bytecode)
obj a

obj b
obj c

array

Bytecode Instruction formats

18

opcode

opcode index1 index1

opcode index

no operands, or implied operands

one operand, either index into const pool or local var array

two operands, both indexes into const pool or local vars

opcode data

opcode data1 data2

one immediate operand

two immediate operands

Bytecode Instruction formats

19

opcode

opcode index1 index1

opcode index

no operands, or implied operands

one operand, either index into const pool or local var array

two operands, both indexes into const pool or local vars

opcode data

opcode data1 data2

one immediate operand

two immediate operands

could be an immediate offset (e.g., for a PC-relative branch), or just an immediate operand
(e.g., a constant)

Bytecode instructions are typed

• e.g., iadd or dadd
• iload, etc.

20

Data movement instructions

• all loads and stores from global or local memory must be to the op
stack
• all functional instructions operate on operands on the op stack
• some instructions have constants hard coded
• e.g., iconst1: pushes int constant 1 onto op stack
• bipush for two small constants
• ldc for arbitrary constant

• pop discards top of op stack
• swap swaps two top elements of op stack

21

Data movement instructions

• Some data movement instructions move between local storage and
stack
• iload_1: take int from local storage location 1 and push on op stack
• iload idx, idx refers to const pool entry
• istore_1/istore idx

• Others involve the heap
• new idx1 idx2: two bytes form idx into const pool, whose entry specifies

object. New object instance is allocated on heap, and reference pushed on op
stack
• getfield and putfield access object fields (described by a const pool

entry)

22

Runtime type conversion (casting)

• supported by explicit instructions, e.g., i2f
• this pops an int from stack, converts it to float and pushes the result

23

Control flow instructions

• ifeq data1 data2: compare to zero (PC-rel offset is 2)
• if_icmpeq data1 data2: compare int equality (PC-rel offset is 2)
• ifnull data1 data2: pop obj. reference, branch if null
• methods are invoked with invoke family of instructions
• invokevirtual idx1 idx2: typical method invocation (virtual functions!)
• invokeinterace: invoke interface methods
• invokespecial: invoke instance init. methods, private methods, superclass

methods
• invokestatic: static methods

24

Exceptions

• some are defined as part of the ISA
• others defined by programmers
• all exceptions have to be handled (cannot be turned off!)
• hot potato model: current method tries to handle
• if it can’t, pop a stack frame and allow calling method to handle
• …and so on up the stack
• eventually the JVM will have to handle fallthrough exceptions

25

Exception Examples

• NullPointerException
• ArrayIndexOutOfBoundsException
• These imply runtime checking of invariants by the VM!

26

How does it work?

• Each method has a table of exception handlers
• Each table entry contains a type, a scope, and a reference to a

handler
• When an exception is thrown, op stack is flushed, table looked up

27

28

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

29

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

30

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

31

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

scenario 1

32

33

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

34

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

35

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

EXCEPTION!

36

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

EXCEPTION!
table lookup (match!)

37

stack
// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 try {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }
 catch(ArithmeticException e) {
 System.out.println ("Can't divide a number by

0");
 }

 }
}

main frame

foo frame

foo method info

From To Target Type

40 45 49 ArithmeticException

…

EXCEPTION!
jump to matched excp. handler

scenario 2

38

39

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

foo frame

foo method info

From To Target Type

…

40

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

foo frame

foo method info

EXCEPTION!
From To Target Type

…

41

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

foo frame

foo method info

EXCEPTION!
From To Target Type

…

lookup FAILS

42

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

foo frame

foo method info

What to do?
From To Target Type

…

lookup FAILS

43

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

pop frame!

44

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

main method info

From To Target Type

…

45

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

main method info

From To Target Type

…still no handler!

46

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{
 public static void main(String args[])
 {
 foo()
 }

 public void foo()
 {
 int a = 30, b = 0;
 int c = a/b; // cannot divide by zero
 System.out.println ("Result = " + c);
 }

}

main frame

main method info

From To Target Type

…JVM has to handle…

Errors and Exceptions are not the same

• Error: something is wrong internally (e.g. with the host or the VM)
• example: StackOverflowError
• example: InternalError

47

Garbage Collection

• JVM can automatically free unused objects
• Detect when last reference to object is destroyed

• JVM spec does not require GC, but most use it
• It uses an algorithm to do this (which one? more later…)

48

Emulation Engine

• Can be a simple instruction interpreter (like the 6502 emulator)
• Or something more advanced (binary translation)
• Industrial JVMs use just-in-time compilation (dynamic byn. tran.) with

profiling
• Profiler translates hot functions to native code, others are emulated

• Constant pool and string lookups are expensive, so most of this
indirection is removed at runtime (more later)

49

Java Native Interface (JNI)

• Gives us interoperability between languages
• E.g., call C code from Java
• and other way around

50

Java Native Interface (JNI)

• Gives us interoperability between languages
• E.g., call C code from Java
• and other way around

51

java program

bytecode

JVM bytecode
interpreter

javac

java

C library

shared object
(machine code)

gcc, clang

Java Native Interface (JNI)

• Gives us interoperability between languages
• E.g., call C code from Java
• and other way around

52

java program

bytecode

JVM bytecode
interpreter

javac

java

C library

shared object
(machine code)

gcc, clang

invoke native code directly

Java Binary Classes

• i.e., .class files
• These define both the code for a Java program, but also the metadata
• not necessarily loaded at program startup
• classes can be loaded lazily

53

54

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

55

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

“cafebabe” (hex)

56

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

constants live here:
- strings
- class names
- method names
- references (including to other obj.)
- etc.

57

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

reference to const pool
entry to this class (index)

58

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

reference to const pool
entry to this class (index)

const pool entry can look like
“MyClass.Foo” (symbolic)

59

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

reference to const pool
entry to my superclass
(who I inherit from)

60

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

reference to const pool
entry to my superclass
(who I inherit from)

every class must have a superclass

61

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

reference to const pool
entry to my superclass
(who I inherit from)

every class must have a superclass
*except Object, which is the root
class (this val will be 0)

62

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

fields are also symbolic references
in const pool (field names
and types)

63

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

fields are also symbolic references
in const pool (field names
and types)

can refer to other objects,
so access to them can trigger class
loading

64

magic number
version info

const. pool size

const pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

…

.class file format

this is where the bytecode for
each class method lives!

