
CS 562 - Virtual Machines - Hale

MOS 6502 Architecture
Intro

CS 562 - Virtual Machines - Hale

History
• Origins lie in the Motorola 6800. Was very expensive for

consumers. ($300, or about $1700 in 2022 $s)

• Chuck Peddle proposes lower-cost, lower-area 6800
design (~$25, ~$100 today). Motorola won’t have it.
Chuck moves to MOS tech.

• Chooses much simpler design, only about 3500
transistors (!)

CS 562 - Virtual Machines - Hale

History (contd.)
• 1975 sees a recession, sales of 6502 not good

• Peddle comes up with MDT-650, a single-board minicomputer/
dev. platform, which hobbyists eat up

• Other players see the potential, and the hobbyist game is on
(Apple, Atari, Commodore, etc.)

• 6502 then used in Apple][, Commodore PET, BBC Micro, Atari
800, and more

CS 562 - Virtual Machines - Hale

CS 562 - Virtual Machines - Hale

Arch. Overview
• Byte-addressable, 16-bit address width. Word size is one byte.

• 3 8-bit registers (1 accumulator, 2 index regs for addressing modes (e.g. array subscripting))

• A, X, Y

• 8-bit stack pointer (SP)

• 8-bit status register (I’ll call this PSW)

• 16-bit program counter (PC)

• Little Endian (like x86)

CS 562 - Virtual Machines - Hale

Physical Memory Map
ROM

Zero Page

Stack

Usable RAM

0x???? - 0xFFFF

0x???? - 0x????I/O Space

0x0100 - 0x0200

0x0000 - 0x0100

0x00200 - 0x????

CS 562 - Virtual Machines - Hale

Address Breakdown
15 8 7 0

Page Number Page Offset

256 Byte Page Size

We can get the page number of an address by shifting off the lower 8 bits

CS 562 - Virtual Machines - Hale

Instruction Encoding
• 256 possible opcodes, only 56 are actually used by the architecture

• 1, 2, or 3-byte instructions

• Data movement (LD/ST)

• Arithmetic: ADD (with carry), SUB (with carry), DEC, INC, CMP

• Logic: AND, OR, XOR, shift/rotate

• Control Flow: branch cond, branch uncond, call subroutine, return

• Other: PS manipulation, bit testing, stacks ops

CS 562 - Virtual Machines - Hale

Program Counter

• (16 bits) Holds address of current instruction

CS 562 - Virtual Machines - Hale

Stack Pointer

• Contains address of first empty location on stack (page 2)

10

CS 562 - Virtual Machines - Hale

Processor Status Word
• Holds status information for the processor. Each bit represents a flag

• Bit 0: "C" - Carry, Carry out of MSB in arithmetic ops. Also set if borrow required in SUB. Also used for shift/rotate ops

• Bit 1: “Z” - Set to 1 if any arith/logic operation produces a zero

• Bit 2: “I” - Interrupt disable. If set, interrupts are disabled (ignored). (Except NMIs)

• Bit 3: “D” - decimal mode status. We will ignore this (like the NES). Indicates to arith. unit to use BCD representation

• Bit 4: “B” - Set when software interrupt is executed (BRK instruction)

• Bit 5: unused

• Bit 6: “V” - Overflow flag: when arithmetic operation overflows, this is set

• Bit 7: “N” - Sign bit. Set when result of an operation is negative.

11

CS 562 - Virtual Machines - Hale

Addressing Modes
• Immediate: operand’s value is in the instruction

• E.g., LDA #$B7 —> load accumulator reg with value 0xb7

• The # symbol indicates that this is an immediate (in ca65
assembler)

12

CS 562 - Virtual Machines - Hale

Addressing Modes
• Absolute: memory address included as operand in instruction

• E.g. LDA $07A3 —> Load accumulator with contents of
memory at 0x07A3. (opcode 0xa3)

• Note: If page number is zero, this means a “zero page”
reference. Uses different opcode!

• E.g. LDA $F7 —> LDA $00F7 (opcode 0xa5)

13

CS 562 - Virtual Machines - Hale

Addressing Modes

• Implied: no operand necessary, implied by instruction

• E.g. TAX instruction (transfer contents of accumulator to X
register) (opcode 0xaa)

14

CS 562 - Virtual Machines - Hale

Addressing Modes
• Indexed: Use a base register (either X or Y) and add it to

the address given as operand

• E.g. LDA $075A, X —> A <- Mem[X + 0x75A]

• Same zero page rules apply. Note that most instructions
only use X with zero page!

15

CS 562 - Virtual Machines - Hale

Addressing Modes
• Indirect: Add a level of indirection to address operand.

NOTE: only used for JMP instruction!

• E.g. JMP ($07A5) —> Jump to the address stored in the
2 bytes at address $07A5

• Original 6502 actually had a bug when using this
addressing mode (we’ll talk about this later)

16

CS 562 - Virtual Machines - Hale

Addressing Modes
• Indexed Indirect: Get target address indirectly

• (e.g. LDA ($10,X))

• Assume X has #4, this mode means our target address is in memory at address $14

• A <- Mem[Mem[(imm.addr & 0xff) + X]]

• Address must be in zero page (it’s a two byte instruction, and addresses will wrap
around)

• Only works with X register

17

CS 562 - Virtual Machines - Hale

Addressing Modes
• Indirect Indexed (I know): Get a target address from memory and offset it with an

index register

• E.g. LDA ($73), Y

• Assume Y has #4, this means our target address is in memory at address $73
(we’ll add Y to the address after we fetch it)

• A <- Mem[Mem[imm.addr & 0xff] + Y]

• Only works with Y, similar zero page restrictions apply (to the immediate addr)

18

CS 562 - Virtual Machines - Hale

Interrupts
• IRQ - Maskable interrupt. When invoked, PC and PS stored on

stack

• Further interrupts are disabled by the processor until handled

• Processor jumps to address of handler that is stored in 0xFFFE
(2 bytes). Handler (likely in ROM) returns with RTI instruction.

• IRQ is masked/unmasked with CLI/SEI instructions

19

CS 562 - Virtual Machines - Hale

Interrupts (contd.)

• NMI - Non-maskable interrupt. Same sequence, but
processor jumps to handler addr stored at 0xFFFA. This
interrupt can’t be disabled!

20

CS 562 - Virtual Machines - Hale

Interrupts (contd.)

• BRK - Software interrupt. Same operation, but B flag is
set in PSW stored on stack. CPU fetches from 0xFFFE
(same vector as IRQ!)

21

CS 562 - Virtual Machines - Hale

Interrupts (contd.)

• RESET - system reset. Nothing pushed on stack, fetch at
vector 0xFFFC, otherwise same

22

CS 562 - Virtual Machines - Hale

Notable 6502 systems

23

CS 562 - Virtual Machines - Hale

Atari VCS

24

MOS 6507 (pared down 6502)

CS 562 - Virtual Machines - Hale

Apple II

25

CS 562 - Virtual Machines - Hale
26

CS 562 - Virtual Machines - Hale

Commodore 64

27

CS 562 - Virtual Machines - Hale

Famicom/Nintendo Entertainment
System

28

CS 562 - Virtual Machines - Hale
29

